1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/Grid_cartesian.h
2015-04-18 17:09:48 +01:00

401 lines
14 KiB
C++

#ifndef GRID_CARTESIAN_H
#define GRID_CARTESIAN_H
#include <Grid.h>
#include <Grid_communicator.h>
namespace Grid{
/////////////////////////////////////////////////////////////////////////////////////////
// Grid Support.
/////////////////////////////////////////////////////////////////////////////////////////
class GridBase : public CartesianCommunicator {
public:
// Give Lattice access
template<class object> friend class Lattice;
GridBase(std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
//FIXME
// protected:
// Lattice wide random support. not yet fully implemented. Need seed strategy
// and one generator per site.
// std::default_random_engine generator;
// static std::mt19937 generator( 9 );
//////////////////////////////////////////////////////////////////////
// Commicator provides information on the processor grid
//////////////////////////////////////////////////////////////////////
// unsigned long _ndimension;
// std::vector<int> _processors; // processor grid
// int _processor; // linear processor rank
// std::vector<int> _processor_coor; // linear processor rank
//////////////////////////////////////////////////////////////////////
// Physics Grid information.
std::vector<int> _simd_layout; // Which dimensions get relayed out over simd lanes.
std::vector<int> _fdimensions;// Global dimensions of array prior to cb removal
std::vector<int> _gdimensions;// Global dimensions of array after cb removal
std::vector<int> _ldimensions;// local dimensions of array with processor images removed
std::vector<int> _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
std::vector<int> _ostride; // Outer stride for each dimension
std::vector<int> _istride; // Inner stride i.e. within simd lane
int _osites; // _isites*_osites = product(dimensions).
int _isites;
std::vector<int> _slice_block; // subslice information
std::vector<int> _slice_stride;
std::vector<int> _slice_nblock;
// Might need these at some point
// std::vector<int> _lstart; // local start of array in gcoors. _processor_coor[d]*_ldimensions[d]
// std::vector<int> _lend; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
public:
////////////////////////////////////////////////////////////////
// Checkerboarding interface is virtual and overridden by
// GridCartesian / GridRedBlackCartesian
////////////////////////////////////////////////////////////////
virtual int CheckerBoarded(int dim)=0;
virtual int CheckerBoard(std::vector<int> site)=0;
virtual int CheckerBoardDestination(int source_cb,int shift)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
inline int CheckerBoardFromOindex (int Oindex){
std::vector<int> ocoor;
oCoorFromOindex(ocoor,Oindex);
int ss=0;
for(int d=0;d<_ndimension;d++){
ss=ss+ocoor[d];
}
return ss&0x1;
}
//////////////////////////////////////////////////////////////////////////////////////////////
// Local layout calculations
//////////////////////////////////////////////////////////////////////////////////////////////
// These routines are key. Subdivide the linearised cartesian index into
// "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
// "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
//
// Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
// stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
// lanes are operated upon simultaneously.
virtual int oIndex(std::vector<int> &coor)
{
int idx=0;
// Works with either global or local coordinates
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
return idx;
}
inline int oIndexReduced(std::vector<int> &ocoor)
{
int idx=0;
// ocoor is already reduced so can eliminate the modulo operation
// for fast indexing and inline the routine
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
return idx;
}
inline void oCoorFromOindex (std::vector<int>& coor,int Oindex){
coor.resize(_ndimension);
for(int d=0;d<_ndimension;d++){
coor[d] = Oindex % _rdimensions[d];
Oindex = Oindex / _rdimensions[d];
}
}
//////////////////////////////////////////////////////////
// SIMD lane addressing
//////////////////////////////////////////////////////////
inline int iIndex(std::vector<int> &lcoor)
{
int idx=0;
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
return idx;
}
inline void iCoorFromIindex(std::vector<int> &coor,int lane)
{
coor.resize(_ndimension);
for(int d=0;d<_ndimension;d++){
coor[d] = lane % _simd_layout[d];
lane = lane / _simd_layout[d];
}
}
inline int PermuteDim(int dimension){
return _simd_layout[dimension]>1;
}
inline int PermuteType(int dimension){
int permute_type=0;
for(int d=_ndimension-1;d>dimension;d--){
if (_simd_layout[d]>1 ) permute_type++;
}
return permute_type;
}
////////////////////////////////////////////////////////////////
// Array sizing queries
////////////////////////////////////////////////////////////////
inline int iSites(void) { return _isites; };
inline int Nsimd(void) { return _isites; };// Synonymous with iSites
inline int oSites(void) { return _osites; };
inline int lSites(void) { return _isites*_osites; };
inline int gSites(void) { return _isites*_osites*_Nprocessors; };
inline int Nd (void) { return _ndimension;};
inline const std::vector<int> &FullDimensions(void) { return _fdimensions;};
inline const std::vector<int> &GlobalDimensions(void) { return _gdimensions;};
inline const std::vector<int> &LocalDimensions(void) { return _ldimensions;};
inline const std::vector<int> &VirtualLocalDimensions(void) { return _ldimensions;};
////////////////////////////////////////////////////////////////
// Global addressing
////////////////////////////////////////////////////////////////
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , std::vector<int> &gcoor)
{
gcoor.resize(_ndimension);
std::vector<int> coor(_ndimension);
ProcessorCoorFromRank(rank,coor);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]&coor[mu];
iCoorFromIindex(coor,i_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]&coor[mu];
oCoorFromOindex (coor,o_idx);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
}
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,std::vector<int> &fcoor)
{
RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
if(CheckerBoarded(0)){
fcoor[0] = fcoor[0]*2+cb;
}
}
void ProcessorCoorLocalCoorToGlobalCoor(std::vector<int> &Pcoor,std::vector<int> &Lcoor,std::vector<int> &gcoor)
{
gcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
}
void GlobalCoorToProcessorCoorLocalCoor(std::vector<int> &pcoor,std::vector<int> &lcoor,const std::vector<int> &gcoor)
{
pcoor.resize(_ndimension);
lcoor.resize(_ndimension);
for(int mu=0;mu<_ndimension;mu++){
pcoor[mu] = gcoor[mu]/_ldimensions[mu];
lcoor[mu] = gcoor[mu]%_ldimensions[mu];
}
}
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const std::vector<int> &gcoor)
{
std::vector<int> pcoor;
std::vector<int> lcoor;
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
rank = RankFromProcessorCoor(pcoor);
i_idx= iIndex(lcoor);
o_idx= oIndex(lcoor);
}
};
class GridCartesian: public GridBase {
public:
virtual int CheckerBoarded(int dim){
return 0;
}
virtual int CheckerBoard(std::vector<int> site){
return 0;
}
virtual int CheckerBoardDestination(int cb,int shift){
return 0;
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
return shift;
}
GridCartesian(std::vector<int> &dimensions,
std::vector<int> &simd_layout,
std::vector<int> &processor_grid
) : GridBase(processor_grid)
{
///////////////////////
// Grid information
///////////////////////
_ndimension = dimensions.size();
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_osites = 1;
_isites = 1;
for(int d=0;d<_ndimension;d++){
_fdimensions[d] = dimensions[d]; // Global dimensions
_gdimensions[d] = _fdimensions[d]; // Global dimensions
_simd_layout[d] = simd_layout[d];
//FIXME check for exact division
// Use a reduced simd grid
_ldimensions[d]= _gdimensions[d]/_processors[d]; //local dimensions
_rdimensions[d]= _ldimensions[d]/_simd_layout[d]; //overdecomposition
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if ( d==0 ) {
_ostride[d] = 1;
_istride[d] = 1;
} else {
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
_istride[d] = _istride[d-1]*_simd_layout[d-1];
}
}
///////////////////////
// subplane information
///////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block =1;
int nblock=1;
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
for(int d=0;d<_ndimension;d++){
nblock/=_rdimensions[d];
_slice_block[d] =block;
_slice_stride[d]=_ostride[d]*_rdimensions[d];
_slice_nblock[d]=nblock;
block = block*_rdimensions[d];
}
};
};
// Specialise this for red black grids storing half the data like a chess board.
class GridRedBlackCartesian : public GridBase
{
public:
virtual int CheckerBoarded(int dim){
if( dim==0) return 1;
else return 0;
}
virtual int CheckerBoard(std::vector<int> site){
return (site[0]+site[1]+site[2]+site[3])&0x1;
}
// Depending on the cb of site, we toggle source cb.
// for block #b, element #e = (b, e)
// we need
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
if(dim != 0) return shift;
int fulldim =_fdimensions[0];
shift = (shift+fulldim)%fulldim;
// Probably faster with table lookup;
// or by looping over x,y,z and multiply rather than computing checkerboard.
int ocb=CheckerBoardFromOindex(osite);
if ( (source_cb+ocb)&1 ) {
return (shift)/2;
} else {
return (shift+1)/2;
}
}
virtual int CheckerBoardDestination(int source_cb,int shift){
if ((shift+_fdimensions[0])&0x1) {
return 1-source_cb;
} else {
return source_cb;
}
};
GridRedBlackCartesian(std::vector<int> &dimensions,
std::vector<int> &simd_layout,
std::vector<int> &processor_grid) : GridBase(processor_grid)
{
///////////////////////
// Grid information
///////////////////////
_ndimension = dimensions.size();
_fdimensions.resize(_ndimension);
_gdimensions.resize(_ndimension);
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
_osites = 1;
_isites = 1;
for(int d=0;d<_ndimension;d++){
_fdimensions[d] = dimensions[d];
_gdimensions[d] = _fdimensions[d];
if (d==0) _gdimensions[0] = _gdimensions[0]/2; // Remove a checkerboard
_ldimensions[d] = _gdimensions[d]/_processors[d];
// Use a reduced simd grid
_simd_layout[d] = simd_layout[d];
_rdimensions[d]= _ldimensions[d]/_simd_layout[d];
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if ( d==0 ) {
_ostride[d] = 1;
_istride[d] = 1;
} else {
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
_istride[d] = _istride[d-1]*_simd_layout[d-1];
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// subplane information
////////////////////////////////////////////////////////////////////////////////////////////
_slice_block.resize(_ndimension);
_slice_stride.resize(_ndimension);
_slice_nblock.resize(_ndimension);
int block =1;
int nblock=1;
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
for(int d=0;d<_ndimension;d++){
nblock/=_rdimensions[d];
_slice_block[d] =block;
_slice_stride[d]=_ostride[d]*_rdimensions[d];
_slice_nblock[d]=nblock;
block = block*_rdimensions[d];
}
};
protected:
virtual int oIndex(std::vector<int> &coor)
{
int idx=_ostride[0]*((coor[0]/2)%_rdimensions[0]);
for(int d=1;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
return idx;
};
};
}
#endif