1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-21 01:02:02 +01:00
Files
Grid/Grid/qcd/utils/GaugeFix.h
Christopher Kelly 19da647e3c Added support for non-periodic gauge field implementations in the random gauge shift performed at the start of the HMC trajectory
(The above required exposing the gauge implementation to the HMC class through the Integrator class)
Made the random shift optional (default on) through a parameter in HMCparameters
Modified ConjugateBC::CshiftLink such that it supports any shift in  -L < shift < L rather than just +-1
Added a tester for the BC-respecting Cshift
Fixed a missing system header include in SSE4 intrinsics wrapper
Fixed sumD_cpu for single-prec types performing an incorrect conversion to a single-prec data type at the end, that fails to compile on some systems
2022-09-09 12:47:09 -04:00

239 lines
8.0 KiB
C++

/*************************************************************************************
grid` physics library, www.github.com/paboyle/Grid
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//#include <Grid/Grid.h>
#ifndef GRID_QCD_GAUGE_FIX_H
#define GRID_QCD_GAUGE_FIX_H
NAMESPACE_BEGIN(Grid);
template <class Gimpl>
class FourierAcceleratedGaugeFixer : public Gimpl {
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
//A_\mu(x) = -i Ta(U_\mu(x) ) where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag) is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
Complex cmi(0.0,-1.0);
A = Ta(U) * cmi;
}
//The derivative of the Lie algebra field
static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
GridBase* grid = U[0].Grid();
GaugeMat Ax(grid);
GaugeMat Axm1(grid);
GaugeMat Utmp(grid);
dmuAmu=Zero();
for(int mu=0;mu<Nd;mu++){
if ( mu != orthog ) {
//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
//Ax = A_\mu(x)
GaugeLinkToLieAlgebraField(U[mu], Ax);
//Axm1 = A_\mu(x_\mu-1)
Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
GaugeLinkToLieAlgebraField(Utmp, Axm1);
//Derivative
dmuAmu = dmuAmu + Ax - Axm1;
}
}
}
//Fix the gauge field Umu
//0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
GridBase *grid = Umu.Grid();
GaugeMat xform(grid);
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog,err_on_no_converge);
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
//Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
GridBase *grid = Umu.Grid();
Real org_plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real org_link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
Real old_trace = org_link_trace;
Real trG;
xform=1.0;
std::vector<GaugeMat> U(Nd,grid);
GaugeMat dmuAmu(grid);
{
Real plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
if( (orthog>=0) && (orthog<Nd) ){
std::cout << GridLogMessage << " Gauge fixing to Coulomb gauge time="<<orthog<< " plaq= "<<plaq<<" link trace = "<<link_trace<< std::endl;
} else {
std::cout << GridLogMessage << " Gauge fixing to Landau gauge plaq= "<<plaq<<" link trace = "<<link_trace<< std::endl;
}
}
for(int i=0;i<maxiter;i++){
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
if ( Fourier==false ) {
trG = SteepestDescentStep(U,xform,alpha,dmuAmu,orthog);
} else {
trG = FourierAccelSteepestDescentStep(U,xform,alpha,dmuAmu,orthog);
}
// std::cout << GridLogMessage << "trG "<< trG<< std::endl;
// std::cout << GridLogMessage << "xform "<< norm2(xform)<< std::endl;
// std::cout << GridLogMessage << "dmuAmu "<< norm2(dmuAmu)<< std::endl;
for(int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(Umu,U[mu],mu);
// Monitor progress and convergence test
// infrequently to minimise cost overhead
if ( i %20 == 0 ) {
Real plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
if (Fourier)
std::cout << GridLogMessage << "Fourier Iteration "<<i<< " plaq= "<<plaq<< " dmuAmu " << norm2(dmuAmu)<< std::endl;
else
std::cout << GridLogMessage << " Iteration "<<i<< " plaq= "<<plaq<< " dmuAmu " << norm2(dmuAmu)<< std::endl;
Real Phi = 1.0 - old_trace / link_trace ;
Real Omega= 1.0 - trG;
std::cout << GridLogMessage << " Iteration "<<i<< " Phi= "<<Phi<< " Omega= " << Omega<< " trG " << trG <<std::endl;
if ( (Omega < Omega_tol) && ( ::fabs(Phi) < Phi_tol) ) {
std::cout << GridLogMessage << "Converged ! "<<std::endl;
return;
}
old_trace = link_trace;
}
}
std::cout << GridLogError << "Gauge fixing did not converge in " << maxiter << " iterations." << std::endl;
if (err_on_no_converge)
assert(0 && "Gauge fixing did not converge within the specified number of iterations");
};
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid();
GaugeMat g(grid);
ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
Real vol = grid->gSites();
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ;
SU<Nc>::GaugeTransform<Gimpl>(U,g);
return trG;
}
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
GridBase *grid = U[0].Grid();
Real vol = grid->gSites();
FFT theFFT((GridCartesian *)grid);
LatticeComplex Fp(grid);
LatticeComplex psq(grid); psq=Zero();
LatticeComplex pmu(grid);
LatticeComplex one(grid); one = Complex(1.0,0.0);
GaugeMat g(grid);
GaugeMat dmuAmu_p(grid);
DmuAmu(U,dmuAmu,orthog);
std::vector<int> mask(Nd,1);
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
theFFT.FFT_dim_mask(dmuAmu_p,dmuAmu,mask,FFT::forward);
//////////////////////////////////
// Work out Fp = psq_max/ psq...
// Avoid singularities in Fp
//////////////////////////////////
Coordinate latt_size = grid->GlobalDimensions();
Coordinate coor(grid->_ndimension,0);
for(int mu=0;mu<Nd;mu++) {
if ( mu != orthog ) {
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
}
}
Complex psqMax(16.0);
Fp = psqMax*one/psq;
pokeSite(TComplex(16.0),Fp,coor);
if( (orthog>=0) && (orthog<Nd) ){
for(int t=0;t<grid->GlobalDimensions()[orthog];t++){
coor[orthog]=t;
pokeSite(TComplex(16.0),Fp,coor);
}
}
dmuAmu_p = dmuAmu_p * Fp;
theFFT.FFT_dim_mask(dmuAmu,dmuAmu_p,mask,FFT::backward);
GaugeMat ciadmam(grid);
Complex cialpha(0.0,-alpha);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
xform = g*xform ;
SU<Nc>::GaugeTransform<Gimpl>(U,g);
return trG;
}
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
GridBase *grid = g.Grid();
Complex cialpha(0.0,-alpha);
GaugeMat ciadmam(grid);
DmuAmu(U,dmuAmu,orthog);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
}
};
NAMESPACE_END(Grid);
#endif