1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 19:25:56 +01:00
Grid/Grid/qcd/smearing/StoutSmearing.h

213 lines
7.2 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/smearing/StoutSmearing.h
Copyright (C) 2019
Author: unknown
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/*
@file StoutSmearing.h
@brief Declares Stout smearing class
*/
#pragma once
NAMESPACE_BEGIN(Grid);
/*! @brief Stout smearing of link variable. */
template <class Gimpl>
class Smear_Stout : public Smear<Gimpl> {
private:
int OrthogDim = -1;
public:
const std::vector<double> SmearRho;
private:
// Smear<Gimpl>* ownership semantics:
// Smear<Gimpl>* passed in to constructor are owned by caller, so we don't delete them here
// Smear<Gimpl>* created within constructor need to be deleted as part of the destructor
const std::unique_ptr<Smear<Gimpl>> OwnedBase; // deleted at destruction
const Smear<Gimpl>* SmearBase; // Not owned by this object, so not deleted at destruction
// only anticipated to be used from default constructor
inline static std::vector<double> rho3D(double rho, int orthogdim){
std::vector<double> rho3d(Nd*Nd);
for (int mu=0; mu<Nd; mu++)
for (int nu=0; nu<Nd; nu++)
rho3d[mu + Nd * nu] = (mu == nu || mu == orthogdim || nu == orthogdim) ? 0.0 : rho;
return rho3d;
};
public:
INHERIT_GIMPL_TYPES(Gimpl)
/*! Stout smearing with base explicitly specified */
Smear_Stout(Smear<Gimpl>* base) : SmearBase{base} {
assert(Nc == 3 && "Stout smearing currently implemented only for Nc==3");
}
/*! Construct stout smearing object from explicitly specified rho matrix */
Smear_Stout(const std::vector<double>& rho_)
: OwnedBase{new Smear_APE<Gimpl>(rho_)}, SmearBase{OwnedBase.get()} {
std::cout << GridLogDebug << "Stout smearing constructor : Smear_Stout(const std::vector<double>& " << rho_ << " )" << std::endl;
assert(Nc == 3 && "Stout smearing currently implemented only for Nc==3");
}
/*! Default constructor. rho is constant in all directions, optionally except for orthogonal dimension */
Smear_Stout(double rho = 1.0, int orthogdim = -1)
: OrthogDim{orthogdim}, SmearRho{ rho3D(rho,orthogdim) }, OwnedBase{ new Smear_APE<Gimpl>(SmearRho) }, SmearBase{OwnedBase.get()} {
assert(Nc == 3 && "Stout smearing currently implemented only for Nc==3");
}
~Smear_Stout() {} // delete SmearBase...
void smear(GaugeField& u_smr, const GaugeField& U) const {
GaugeField C(U.Grid());
GaugeLinkField tmp(U.Grid()), iq_mu(U.Grid()), Umu(U.Grid());
std::cout << GridLogDebug << "Stout smearing started\n";
// C contains the staples multiplied by some rho
u_smr = U ; // set the smeared field to the current gauge field
SmearBase->smear(C, U);
for (int mu = 0; mu < Nd; mu++) {
if( mu == OrthogDim ) continue ;
// u_smr = exp(iQ_mu)*U_mu apart from Orthogdim
Umu = peekLorentz(U, mu);
tmp = peekLorentz(C, mu);
iq_mu = Ta( tmp * adj(Umu));
exponentiate_iQ(tmp, iq_mu);
pokeLorentz(u_smr, tmp * Umu, mu);
}
std::cout << GridLogDebug << "Stout smearing completed\n";
};
void derivative(GaugeField& SigmaTerm, const GaugeField& iLambda,
const GaugeField& Gauge) const {
SmearBase->derivative(SigmaTerm, iLambda, Gauge);
};
void BaseSmear(GaugeField& C, const GaugeField& U) const {
SmearBase->smear(C, U);
};
// Repetion of code here (use the Tensor_exp.h function)
void exponentiate_iQ(GaugeLinkField& e_iQ, const GaugeLinkField& iQ) const {
// Put this outside
// only valid for SU(3) matrices
// only one Lorentz direction at a time
// notice that it actually computes
// exp ( input matrix )
// the i sign is coming from outside
// input matrix is anti-hermitian NOT hermitian
GridBase* grid = iQ.Grid();
GaugeLinkField unity(grid);
unity = 1.0;
GaugeLinkField iQ2(grid), iQ3(grid);
LatticeComplex u(grid), w(grid);
LatticeComplex f0(grid), f1(grid), f2(grid);
iQ2 = iQ * iQ;
iQ3 = iQ * iQ2;
//We should check sgn(c0) here already and then apply eq (34) from 0311018
set_uw(u, w, iQ2, iQ3);
set_fj(f0, f1, f2, u, w);
e_iQ = f0 * unity + timesMinusI(f1) * iQ - f2 * iQ2;
};
void set_uw(LatticeComplex& u, LatticeComplex& w, GaugeLinkField& iQ2,
GaugeLinkField& iQ3) const {
Complex one_over_three = 1.0 / 3.0;
Complex one_over_two = 1.0 / 2.0;
GridBase* grid = u.Grid();
LatticeComplex c0(grid), c1(grid), tmp(grid), c0max(grid), theta(grid);
// sign in c0 from the conventions on the Ta
c0 = -imag(trace(iQ3)) * one_over_three;
c1 = -real(trace(iQ2)) * one_over_two;
// Cayley Hamilton checks to machine precision, tested
tmp = c1 * one_over_three;
c0max = 2.0 * pow(tmp, 1.5);
theta = acos(c0 / c0max) *
one_over_three; // divide by three here, now leave as it is
u = sqrt(tmp) * cos(theta);
w = sqrt(c1) * sin(theta);
}
void set_fj(LatticeComplex& f0, LatticeComplex& f1, LatticeComplex& f2,
const LatticeComplex& u, const LatticeComplex& w) const {
GridBase* grid = u.Grid();
LatticeComplex xi0(grid), u2(grid), w2(grid), cosw(grid);
LatticeComplex fden(grid);
LatticeComplex h0(grid), h1(grid), h2(grid);
LatticeComplex e2iu(grid), emiu(grid), ixi0(grid), qt(grid);
LatticeComplex unity(grid);
unity = 1.0;
xi0 = func_xi0(w);
u2 = u * u;
w2 = w * w;
cosw = cos(w);
ixi0 = timesI(xi0);
emiu = cos(u) - timesI(sin(u));
e2iu = cos(2.0 * u) + timesI(sin(2.0 * u));
h0 = e2iu * (u2 - w2) +
emiu * ((8.0 * u2 * cosw) + (2.0 * u * (3.0 * u2 + w2) * ixi0));
h1 = e2iu * (2.0 * u) - emiu * ((2.0 * u * cosw) - (3.0 * u2 - w2) * ixi0);
h2 = e2iu - emiu * (cosw + (3.0 * u) * ixi0);
fden = unity / (9.0 * u2 - w2); // reals
f0 = h0 * fden;
f1 = h1 * fden;
f2 = h2 * fden;
}
LatticeComplex func_xi0(const LatticeComplex& w) const {
// Definition from arxiv 0311018
//if (abs(w) < 0.05) {w2 = w*w; return 1.0 - w2/6.0 * (1.0-w2/20.0 * (1.0-w2/42.0));}
return sin(w) / w;
}
LatticeComplex func_xi1(const LatticeComplex& w) const {
// Define a function to do the check
// if( w < 1e-4 ) std::cout << GridLogWarning << "[Smear_stout] w too small:
// "<< w <<"\n";
return cos(w) / (w * w) - sin(w) / (w * w * w);
}
};
NAMESPACE_END(Grid);