1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 10:15:36 +00:00
Grid/benchmarks/Benchmark_meson_field.cc

815 lines
24 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_wilson.cc
Copyright (C) 2018
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
#include "Grid/util/Profiling.h"
template<class vobj>
void sliceInnerProductMesonField(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0].Grid();
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
assert(mat.size()==Lblock*Rblock);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd*Lblock*Rblock);
thread_for(r, rd * Lblock * Rblock,{
lvSum[r] = Zero();
});
std::vector<scalar_type > lsSum(ld*Lblock*Rblock,scalar_type(0.0));
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
thread_for(r,rd,{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
autoView(lhs_v, lhs[i], CpuRead);
auto left = conjugate(lhs_v[ss]);
for(int j=0;j<Rblock;j++){
int idx = i+Lblock*j+Lblock*Rblock*r;
autoView(rhs_v, rhs[j], CpuRead);
auto right = rhs_v[ss];
vector_type vv = left()(0)(0) * right()(0)(0)
+ left()(0)(1) * right()(0)(1)
+ left()(0)(2) * right()(0)(2)
+ left()(1)(0) * right()(1)(0)
+ left()(1)(1) * right()(1)(1)
+ left()(1)(2) * right()(1)(2)
+ left()(2)(0) * right()(2)(0)
+ left()(2)(1) * right()(2)(1)
+ left()(2)(2) * right()(2)(2)
+ left()(3)(0) * right()(3)(0)
+ left()(3)(1) * right()(3)(1)
+ left()(3)(2) * right()(3)(2);
lvSum[idx]=lvSum[idx]+vv;
}
}
}
}
});
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
thread_for(rt,rd,{
Coordinate icoor(Nd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
iScalar<vector_type> temp;
ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);
temp._internal = lvSum[i+Lblock*j+Lblock*Rblock*rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
int ij_dx = i+Lblock*j+Lblock*Rblock*ldx;
lsSum[ij_dx]=lsSum[ij_dx]+extracted[idx]._internal;
}
}}
});
std::cout << GridLogMessage << " Entering non parallel loop "<<std::endl;
for(int t=0;t<fd;t++)
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
if (pt == grid->_processor_coor[orthogdim]){
int ij_dx = i + Lblock * j + Lblock * Rblock * lt;
mat[i+j*Lblock][t] = lsSum[ij_dx];
}
else{
mat[i+j*Lblock][t] = scalar_type(0.0);
}
}}
}
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
template<class vobj>
void sliceInnerProductMesonFieldGamma(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim,
std::vector<Gamma::Algebra> gammas)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0].Grid();
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
assert(mat.size()==Lblock*Rblock*Ngamma);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Ngamma;
int MFlvol = ld*Lblock*Rblock*Ngamma;
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(MFrvol);
thread_for(r,MFrvol,{
lvSum[r] = Zero();
});
std::vector<scalar_type > lsSum(MFlvol);
thread_for( r,MFlvol,{
lsSum[r]=scalar_type(0.0);
});
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
thread_for(r,rd,{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
autoView(lhs_v,lhs[i],CpuRead);
auto left = conjugate(lhs_v[ss]);
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
autoView(rhs_v,rhs[j],CpuRead);
auto right = Gamma(gammas[mu])*rhs_v[ss];
vector_type vv = left()(0)(0) * right()(0)(0)
+ left()(0)(1) * right()(0)(1)
+ left()(0)(2) * right()(0)(2)
+ left()(1)(0) * right()(1)(0)
+ left()(1)(1) * right()(1)(1)
+ left()(1)(2) * right()(1)(2)
+ left()(2)(0) * right()(2)(0)
+ left()(2)(1) * right()(2)(1)
+ left()(2)(2) * right()(2)(2)
+ left()(3)(0) * right()(3)(0)
+ left()(3)(1) * right()(3)(1)
+ left()(3)(2) * right()(3)(2);
int idx = mu+i*Ngamma+Lblock*Ngamma*j+Ngamma*Lblock*Rblock*r;
lvSum[idx]=lvSum[idx]+vv;
}
}
}
}
}
});
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
thread_for(rt,rd,{
iScalar<vector_type> temp;
Coordinate icoor(Nd);
ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
int ij_rdx = mu+i*Ngamma+Ngamma*Lblock*j+Ngamma*Lblock*Rblock*rt;
temp._internal = lvSum[ij_rdx];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
int ij_ldx = mu+i*Ngamma+Ngamma*Lblock*j+Ngamma*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx]._internal;
}
}}}
});
std::cout << GridLogMessage << " Entering non parallel loop "<<std::endl;
for(int t=0;t<fd;t++)
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
if (pt == grid->_processor_coor[orthogdim]){
int ij_dx = mu+i*Ngamma+Ngamma*Lblock*j+Ngamma*Lblock*Rblock* lt;
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = lsSum[ij_dx];
}
else{
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = scalar_type(0.0);
}
}}}
}
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
template<class vobj>
void sliceInnerProductMesonFieldGamma1(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim,
std::vector<Gamma::Algebra> gammas)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0].Grid();
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
assert(mat.size()==Lblock*Rblock*Ngamma);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock;
int MFlvol = ld*Lblock*Rblock;
Vector<SpinMatrix_v > lvSum(MFrvol);
thread_for(r,MFrvol,{
lvSum[r] = Zero();
});
Vector<SpinMatrix_s > lsSum(MFlvol);
thread_for(r,MFlvol,{
lsSum[r]=scalar_type(0.0);
});
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
thread_for(r,rd,{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
autoView(lhs_v,lhs[i],CpuRead);
auto left = conjugate(lhs_v[ss]);
for(int j=0;j<Rblock;j++){
SpinMatrix_v vv;
autoView(rhs_v,rhs[j],CpuRead);
auto right = rhs_v[ss];
for(int s1=0;s1<Ns;s1++){
for(int s2=0;s2<Ns;s2++){
vv()(s2,s1)() = left()(s1)(0) * right()(s2)(0)
+ left()(s1)(1) * right()(s2)(1)
+ left()(s1)(2) * right()(s2)(2);
}}
int idx = i+Lblock*j+Lblock*Rblock*r;
lvSum[idx]=lvSum[idx]+vv;
}
}
}
}
});
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
thread_for(rt,rd,{
Coordinate icoor(Nd);
ExtractBuffer<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
int ij_rdx = i+Lblock*j+Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = i+Lblock*j+Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}}
});
std::cout << GridLogMessage << " Entering third parallel loop "<<std::endl;
thread_for(t,fd,
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
if (pt == grid->_processor_coor[orthogdim]){
int ij_dx = i + Lblock * j + Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++){
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = TensorRemove(trace(lsSum[ij_dx]*Gamma(gammas[mu])));
}
}
else{
for(int mu=0;mu<Ngamma;mu++){
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = scalar_type(0.0);
}
}
}}
});
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
template<class vobj>
void sliceInnerProductMesonFieldGammaMom(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim,
std::vector<Gamma::Algebra> gammas,
const std::vector<LatticeComplex > &mom)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0].Grid();
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
int Nmom = mom.size();
assert(mat.size()==Lblock*Rblock*Ngamma*Nmom);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom;
Vector<SpinMatrix_v > lvSum(MFrvol);
thread_for(r,MFrvol,
{
lvSum[r] = Zero();
});
Vector<SpinMatrix_s > lsSum(MFlvol);
thread_for(r,MFlvol,
{
lsSum[r]=scalar_type(0.0);
});
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
thread_for(r,rd,
{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
autoView(lhs_v,lhs[i],CpuRead);
auto left = conjugate(lhs_v[ss]);
for(int j=0;j<Rblock;j++){
SpinMatrix_v vv;
autoView(rhs_v,rhs[j],CpuRead);
auto right = rhs_v[ss];
for(int s1=0;s1<Ns;s1++){
for(int s2=0;s2<Ns;s2++){
vv()(s1,s2)() = left()(s1)(0) * right()(s2)(0)
+ left()(s1)(1) * right()(s2)(1)
+ left()(s1)(2) * right()(s2)(2);
}}
// After getting the sitewise product do the mom phase loop
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
// Trigger unroll
for ( int m=0;m<Nmom;m++){
int idx = m+base;
autoView(mom_v,mom[m],CpuRead);
auto phase = mom_v[ss];
mac(&lvSum[idx],&vv,&phase);
}
}
}
}
}
});
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
thread_for(rt,rd,
{
Coordinate icoor(Nd);
ExtractBuffer<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int m=0;m<Nmom;m++){
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}}}
});
std::cout << GridLogMessage << " Entering third parallel loop "<<std::endl;
thread_for(t,fd,
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
if (pt == grid->_processor_coor[orthogdim]){
for(int m=0;m<Nmom;m++){
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++){
mat[ mu
+m*Ngamma
+i*Nmom*Ngamma
+j*Nmom*Ngamma*Lblock][t] = TensorRemove(trace(lsSum[ij_dx]*Gamma(gammas[mu])));
}
}
}
else{
for(int mu=0;mu<Ngamma;mu++){
for(int m=0;m<Nmom;m++){
mat[mu+m*Ngamma+i*Nmom*Ngamma+j*Nmom*Lblock*Ngamma][t] = scalar_type(0.0);
}}
}
}}
});
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
/*
template void sliceInnerProductMesonField<SpinColourVector>(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<SpinColourVector> > &lhs,
const std::vector<Lattice<SpinColourVector> > &rhs,
int orthogdim) ;
*/
std::vector<Gamma::Algebra> Gmu4 ( {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT });
std::vector<Gamma::Algebra> Gmu16 ( {
Gamma::Algebra::Gamma5,
Gamma::Algebra::GammaT,
Gamma::Algebra::GammaTGamma5,
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaXGamma5,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaYGamma5,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaZGamma5,
Gamma::Algebra::Identity,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaZT
});
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
auto latt_size = GridDefaultLatt();
auto simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
auto mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
const int Nmom=7;
int nt = latt_size[Tp];
uint64_t vol = 1;
for(int d=0;d<Nd;d++){
vol = vol*latt_size[d];
}
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
int Nm = atoi(argv[1]); // number of all modes (high + low)
std::vector<LatticeFermion> v(Nm,&Grid);
std::vector<LatticeFermion> w(Nm,&Grid);
std::vector<LatticeFermion> gammaV(Nm,&Grid);
std::vector<LatticeComplex> phases(Nmom,&Grid);
for(int i=0;i<Nm;i++) {
random(pRNG,v[i]);
random(pRNG,w[i]);
}
for(int i=0;i<Nmom;i++) {
phases[i] = Complex(1.0);
}
double flops = vol * (11.0 * 8.0 + 6.0) * Nm*Nm;
double byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm;
std::vector<ComplexD> ip(nt);
std::vector<std::vector<ComplexD> > MesonFields (Nm*Nm);
std::vector<std::vector<ComplexD> > MesonFields4 (Nm*Nm*4);
std::vector<std::vector<ComplexD> > MesonFields16 (Nm*Nm*16);
std::vector<std::vector<ComplexD> > MesonFields161(Nm*Nm*16);
std::vector<std::vector<ComplexD> > MesonFields16mom (Nm*Nm*16*Nmom);
std::vector<std::vector<ComplexD> > MesonFieldsRef(Nm*Nm);
for(int i=0;i<MesonFields.size();i++ ) MesonFields [i].resize(nt);
for(int i=0;i<MesonFieldsRef.size();i++) MesonFieldsRef[i].resize(nt);
for(int i=0;i<MesonFields4.size();i++ ) MesonFields4 [i].resize(nt);
for(int i=0;i<MesonFields16.size();i++ ) MesonFields16 [i].resize(nt);
for(int i=0;i<MesonFields161.size();i++ ) MesonFields161[i].resize(nt);
for(int i=0;i<MesonFields16mom.size();i++ ) MesonFields16mom [i].resize(nt);
GridLogMessage.TimingMode(1);
std::cout<<GridLogMessage << "Running loop with sliceInnerProductVector"<<std::endl;
double t0 = usecond();
for(int i=0;i<Nm;i++) {
for(int j=0;j<Nm;j++) {
sliceInnerProductVector(ip, w[i],v[j],Tp);
for(int t=0;t<nt;t++){
MesonFieldsRef[i+j*Nm][t] = ip[t];
}
}}
double t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with new code for Nt="<<nt<<std::endl;
t0 = usecond();
sliceInnerProductMesonField(MesonFields,w,v,Tp);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Four gammas code for Nt="<<nt<<std::endl;
flops = vol * (11.0 * 8.0 + 6.0) * Nm*Nm*4;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) ) * Nm*Nm* 4;
t0 = usecond();
sliceInnerProductMesonFieldGamma(MesonFields4,w,v,Tp,Gmu4);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Sixteen gammas code for Nt="<<nt<<std::endl;
flops = vol * (11.0 * 8.0 + 6.0) * Nm*Nm*16;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) ) * Nm*Nm* 16;
t0 = usecond();
sliceInnerProductMesonFieldGamma(MesonFields16,w,v,Tp,Gmu16);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Sixteen gammas code1 for Nt="<<nt<<std::endl;
flops = vol * ( 2 * 8.0 + 6.0) * Nm*Nm*16;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) ) * Nm*Nm* 16;
t0 = usecond();
sliceInnerProductMesonFieldGamma1(MesonFields161, w, v, Tp, Gmu16);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Sixteen gammas "<<Nmom<<" momenta "<<std::endl;
flops = vol * ( 2 * 8.0 + 6.0 + 8.0*Nmom) * Nm*Nm*16;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) *Nmom ) * Nm*Nm* 16;
t0 = usecond();
sliceInnerProductMesonFieldGammaMom(MesonFields16mom,w,v,Tp,Gmu16,phases);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
RealD err = 0;
RealD err2 = 0;
ComplexD diff;
ComplexD diff2;
for(int i=0;i<Nm;i++) {
for(int j=0;j<Nm;j++) {
for(int t=0;t<nt;t++){
diff = MesonFields[i+Nm*j][t] - MesonFieldsRef[i+Nm*j][t];
err += real(diff*conj(diff));
}
}}
std::cout<<GridLogMessage << "Norm error "<< err <<std::endl;
err = err*0.;
diff = diff*0.;
for (int mu = 0; mu < 16; mu++){
for (int k = 0; k < gammaV.size(); k++){
gammaV[k] = Gamma(Gmu16[mu]) * v[k];
}
for (int i = 0; i < Nm; i++){
for (int j = 0; j < Nm; j++){
sliceInnerProductVector(ip, w[i], gammaV[j], Tp);
for (int t = 0; t < nt; t++){
MesonFields[i + j * Nm][t] = ip[t];
diff = MesonFields16[mu+i*16+Nm*16*j][t] - MesonFields161[mu+i*16+Nm*16*j][t];
diff2 = MesonFields[i+j*Nm][t] - MesonFields161[mu+i*16+Nm*16*j][t];
err += real(diff*conj(diff));
err2 += real(diff2*conj(diff2));
}
}
}
}
std::cout << GridLogMessage << "Norm error 16 gamma1/16 gamma naive " << err << std::endl;
std::cout << GridLogMessage << "Norm error 16 gamma1/sliceInnerProduct " << err2 << std::endl;
Grid_finalize();
}