1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00
Grid/lib/stencil/Lebesgue.cc

217 lines
6.0 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/stencil/Lebesgue.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <algorithm>
namespace Grid {
int LebesgueOrder::UseLebesgueOrder;
std::vector<int> LebesgueOrder::Block({8,2,2,2});
LebesgueOrder::IndexInteger LebesgueOrder::alignup(IndexInteger n){
n--; // 1000 0011 --> 1000 0010
n |= n >> 1; // 1000 0010 | 0100 0001 = 1100 0011
n |= n >> 2; // 1100 0011 | 0011 0000 = 1111 0011
n |= n >> 4; // 1111 0011 | 0000 1111 = 1111 1111
n |= n >> 8; // ... (At this point all bits are 1, so further bitwise-or
n |= n >> 16; // operations produce no effect.)
n++; // 1111 1111 --> 1 0000 0000
return n;
};
LebesgueOrder::LebesgueOrder(GridBase *_grid)
{
grid = _grid;
if ( Block[0]==0) ZGraph();
else if ( Block[1]==0) NoBlocking();
else CartesianBlocking();
}
void LebesgueOrder::NoBlocking(void)
{
std::cout<<GridLogDebug<<"Lexicographic : no cache blocking"<<std::endl;
_LebesgueReorder.resize(0);
for ( int s = 0 ; s!= grid->oSites();s++){
_LebesgueReorder.push_back(s);
}
}
void LebesgueOrder::CartesianBlocking(void)
{
_LebesgueReorder.resize(0);
// std::cout << GridLogDebug << " CartesianBlocking ";
// for(int d=0;d<Block.size();d++) std::cout <<Block[d]<<" ";
// std::cout<<std::endl;
IndexInteger ND = grid->_ndimension;
assert(ND==4);
assert(ND==Block.size());
std::vector<IndexInteger> dims(ND);
std::vector<IndexInteger> xo(ND,0);
std::vector<IndexInteger> xi(ND,0);
for(IndexInteger mu=0;mu<ND;mu++){
dims[mu] = grid->_rdimensions[mu];
}
IterateO(ND,ND-1,xo,xi,dims);
};
void LebesgueOrder::IterateO(int ND,int dim,
std::vector<IndexInteger> & xo,
std::vector<IndexInteger> & xi,
std::vector<IndexInteger> &dims)
{
for(xo[dim]=0;xo[dim]<dims[dim];xo[dim]+=Block[dim]){
if ( dim > 0 ) {
IterateO(ND,dim-1,xo,xi,dims);
} else {
IterateI(ND,ND-1,xo,xi,dims);
}
}
};
void LebesgueOrder::IterateI(int ND,
int dim,
std::vector<IndexInteger> & xo,
std::vector<IndexInteger> & xi,
std::vector<IndexInteger> &dims)
{
std::vector<IndexInteger> x(ND);
for(xi[dim]=0;xi[dim]<std::min(dims[dim]-xo[dim],Block[dim]);xi[dim]++){
if ( dim > 0 ) {
IterateI(ND,dim-1,xo,xi,dims);
} else {
for(int d=0;d<ND;d++){
x[d]=xi[d]+xo[d];
// std::cout << x[d]<<" ";
}
// std::cout << "\n";
IndexInteger index;
Lexicographic::IndexFromCoor(x,index,grid->_rdimensions);
_LebesgueReorder.push_back(index);
}
}
}
void LebesgueOrder::ZGraph(void)
{
_LebesgueReorder.resize(0);
std::cout << GridLogDebug << " Lebesgue order "<<std::endl;
// Align up dimensions to power of two.
const IndexInteger one=1;
IndexInteger ND = grid->_ndimension;
std::vector<IndexInteger> dims(ND);
std::vector<IndexInteger> adims(ND);
std::vector<std::vector<IndexInteger> > bitlist(ND);
for(IndexInteger mu=0;mu<ND;mu++){
dims[mu] = grid->_rdimensions[mu];
assert ( dims[mu] != 0 );
adims[mu] = alignup(dims[mu]);
}
// List which bits of padded volume coordinate contribute; this strategy
// i) avoids recursion
// ii) has loop lengths at most the width of a 32 bit word.
int sitebit=0;
for(int bit=0;bit<32;bit++){
IndexInteger mask = one<<bit;
for(int mu=0;mu<ND;mu++){ // mu 0 takes bit 0; mu 1 takes bit 1 etc...
if ( mask&(adims[mu]-1) ){
bitlist[mu].push_back(sitebit);
sitebit++;
}
}
}
// Work out padded and unpadded volumes
IndexInteger avol = 1;
for(int mu=0;mu<ND;mu++) avol = avol * adims[mu];
IndexInteger vol = 1;
for(int mu=0;mu<ND;mu++) vol = vol * dims[mu];
// Loop over padded volume, following Lebesgue curve
// We interleave the bits from sequential "mu".
std::vector<IndexInteger> ax(ND);
for(IndexInteger asite=0;asite<avol;asite++){
// Start with zero and collect bits
for(int mu=0;mu<ND;mu++) ax[mu] = 0;
int contained = 1;
for(int mu=0;mu<ND;mu++){
// Build the coordinate on the aligned volume
for(int bit=0;bit<bitlist[mu].size();bit++){
int sbit=bitlist[mu][bit];
if(asite&(one<<sbit)){
ax[mu]|=one<<bit;
}
}
// Is it contained in original box
if ( ax[mu]>dims[mu]-1 ) contained = 0;
}
if ( contained ) {
int site = ax[0]
+ dims[0]*ax[1]
+dims[0]*dims[1]*ax[2]
+dims[0]*dims[1]*dims[2]*ax[3];
assert(site < vol);
_LebesgueReorder.push_back(site);
}
}
assert( _LebesgueReorder.size() == vol );
/*
std::vector<int> coor(4);
for(IndexInteger asite=0;asite<vol;asite++){
grid->oCoorFromOindex (coor,_LebesgueReorder[asite]);
std::cout << " site "<<asite << "->" << _LebesgueReorder[asite]<< " = ["
<< coor[0]<<","
<< coor[1]<<","
<< coor[2]<<","
<< coor[3]<<"]"
<<std::endl;
}
*/
}
}