1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/lib/FFT.h

187 lines
4.8 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Cshift.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef _GRID_FFT_H_
#define _GRID_FFT_H_
#include <Grid/fftw/fftw3.h>
namespace Grid {
class FFT {
private:
GridCartesian *vgrid;
GridCartesian *sgrid;
int Nd;
std::vector<int> dimensions;
std::vector<int> processors;
std::vector<int> processor_coor;
public:
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
FFT ( GridCartesian * grid ) :
vgrid(grid),
Nd(grid->_ndimension),
dimensions(grid->_fdimensions),
processors(grid->_processors),
processor_coor(grid->_processor_coor)
{
std::vector<int> layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors);
};
~FFT ( void) {
delete sgrid;
}
template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int inverse){
conformable(result._grid,vgrid);
conformable(source._grid,vgrid);
int L = vgrid->_ldimensions[dim];
int G = vgrid->_fdimensions[dim];
std::vector<int> layout(Nd,1);
std::vector<int> pencil_gd(vgrid->_fdimensions);
std::vector<int> pencil_ld(processors);
pencil_gd[dim] = G*processors[dim];
pencil_ld[dim] = G*processors[dim];
// Pencil global vol LxLxGxLxL per node
GridCartesian pencil_g(pencil_gd,layout,processors);
GridCartesian pencil_l(pencil_ld,layout,processors);
// Construct pencils
typedef typename vobj::scalar_object sobj;
Lattice<vobj> ssource(vgrid); ssource =source;
Lattice<sobj> pgsource(&pencil_g);
Lattice<sobj> pgresult(&pencil_g);
Lattice<sobj> plsource(&pencil_l);
Lattice<sobj> plresult(&pencil_l);
{
assert(sizeof(typename sobj::scalar_type)==sizeof(ComplexD));
assert(sizeof(fftw_complex)==sizeof(ComplexD));
assert(sizeof(fftw_complex)==sizeof(ComplexD));
int Ncomp = sizeof(sobj)/sizeof(fftw_complex);
int rank = 1; /* not 2: we are computing 1d transforms */
int n[] = {G}; /* 1d transforms of length G */
int howmany = Ncomp;
int odist,idist,istride,ostride;
idist = odist = 1;
istride = ostride = Ncomp; /* distance between two elements in the same column */
int *inembed = n, *onembed = n;
fftw_complex *in = (fftw_complex *)&plsource._odata[0];
fftw_complex *out= (fftw_complex *)&plresult._odata[0];
int sign = FFTW_FORWARD;
if (inverse) sign = FFTW_BACKWARD;
fftw_plan p = fftw_plan_many_dft(rank,n,howmany,
in,inembed,
istride,idist,
out,onembed,
ostride, odist,
sign,FFTW_ESTIMATE);
// Barrel shift and collect global pencil
for(int p=0;p<processors[dim];p++) {
for(int idx=0;idx<sgrid->lSites();idx++) {
std::vector<int> lcoor(Nd);
sgrid->LocalIndexToLocalCoor(idx,lcoor);
sobj s;
peekLocalSite(s,ssource,lcoor);
lcoor[dim]+=p*L;
pokeLocalSite(s,pgsource,lcoor);
}
ssource = Cshift(ssource,dim,L);
}
// Loop over orthog coords
for(int idx=0;idx<sgrid->lSites();idx++) {
std::vector<int> pcoor(Nd,0);
std::vector<int> lcoor(Nd);
sgrid->LocalIndexToLocalCoor(idx,lcoor);
if ( lcoor[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
// Project to local pencil array
for(int l=0;l<G;l++){
sobj s;
pcoor[dim]=l;
lcoor[dim]=l;
peekLocalSite(s,pgsource,lcoor);
pokeLocalSite(s,plsource,pcoor);
}
// FFT the pencil
fftw_execute(p);
// Extract the result
for(int l=0;l<L;l++){
sobj s;
int p = processor_coor[dim];
lcoor[dim] = l;
pcoor[dim] = l+L*p;
peekLocalSite(s,plresult,pcoor);
pokeLocalSite(s,result,lcoor);
}
}
}
fftw_destroy_plan(p);
}
}
};
}
#endif