1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00
Grid/tests/hmc/Test_action_dwf_gparity2fvs1f.cc
2022-11-15 22:58:30 -05:00

258 lines
9.4 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: tests/hmc/Test_action_dwf_gparity2fvs1f.cc
Copyright (C) 2015
Author: Christopher Kelly <ckelly@bnl.gov>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
template<typename FermionField2f, typename FermionField1f>
void copy2fTo1fFermionField(FermionField1f &out, const FermionField2f &in, int gpdir){
auto f0_halfgrid = PeekIndex<GparityFlavourIndex>(in,0); //on 2f Grid
FermionField1f f0_fullgrid_dbl(out.Grid());
Replicate(f0_halfgrid, f0_fullgrid_dbl); //double it up to live on the 1f Grid
auto f1_halfgrid = PeekIndex<GparityFlavourIndex>(in,1);
FermionField1f f1_fullgrid_dbl(out.Grid());
Replicate(f1_halfgrid, f1_fullgrid_dbl);
const Coordinate &dim_2f = in.Grid()->GlobalDimensions();
const Coordinate &dim_1f = out.Grid()->GlobalDimensions();
//We have to be careful for 5d fields; the s-direction is placed before the x,y,z,t and so we need to shift gpdir by 1
std::cout << "gpdir " << gpdir << std::endl;
gpdir+=1;
std::cout << "gpdir for 5D fields " << gpdir << std::endl;
std::cout << "dim_2f " << dim_2f << std::endl;
std::cout << "dim_1f " << dim_1f << std::endl;
assert(dim_1f[gpdir] == 2*dim_2f[gpdir]);
LatticeInteger xcoor_1f(out.Grid()); //5d lattice integer
LatticeCoordinate(xcoor_1f,gpdir);
Integer L = dim_2f[gpdir];
out = where(xcoor_1f < L, f0_fullgrid_dbl, f1_fullgrid_dbl);
}
//Both have the same field type
void copy2fTo1fGaugeField(LatticeGaugeField &out, const LatticeGaugeField &in, int gpdir){
LatticeGaugeField U_dbl(out.Grid());
Replicate(in, U_dbl);
LatticeGaugeField Uconj_dbl = conjugate( U_dbl );
const Coordinate &dim_2f = in.Grid()->GlobalDimensions();
LatticeInteger xcoor_1f(out.Grid());
LatticeCoordinate(xcoor_1f,gpdir);
Integer L = dim_2f[gpdir];
out = where(xcoor_1f < L, U_dbl, Uconj_dbl);
}
std::ostream & operator<<(std::ostream &os, const Coordinate &x){
os << "(";
for(int i=0;i<x.size();i++) os << x[i] << (i<x.size()-1 ? " " : "");
os << ")";
return os;
}
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
int Ls = 16;
Coordinate latt_2f = GridDefaultLatt();
Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
int mu = 0; //Gparity direction
Coordinate latt_1f = latt_2f;
latt_1f[mu] *= 2;
GridCartesian * UGrid_1f = SpaceTimeGrid::makeFourDimGrid(latt_1f, simd_layout, mpi_layout);
GridRedBlackCartesian * UrbGrid_1f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_1f);
GridCartesian * FGrid_1f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_1f);
GridRedBlackCartesian * FrbGrid_1f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_1f);
GridCartesian * UGrid_2f = SpaceTimeGrid::makeFourDimGrid(latt_2f, simd_layout, mpi_layout);
GridRedBlackCartesian * UrbGrid_2f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_2f);
GridCartesian * FGrid_2f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_2f);
GridRedBlackCartesian * FrbGrid_2f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_2f);
std::cout << "SIMD layout " << simd_layout << std::endl;
std::cout << "MPI layout " << mpi_layout << std::endl;
std::cout << "2f dimensions " << latt_2f << std::endl;
std::cout << "1f dimensions " << latt_1f << std::endl;
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5_2f(FGrid_2f); RNG5_2f.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4_2f(UGrid_2f); RNG4_2f.SeedFixedIntegers(seeds4);
std::cout << "Generating hot 2f gauge configuration" << std::endl;
LatticeGaugeField Umu_2f(UGrid_2f);
SU<Nc>::HotConfiguration(RNG4_2f,Umu_2f);
std::cout << "Copying 2f->1f gauge field" << std::endl;
LatticeGaugeField Umu_1f(UGrid_1f);
copy2fTo1fGaugeField(Umu_1f, Umu_2f, mu);
typedef GparityWilsonImplR FermionImplPolicy2f;
typedef GparityDomainWallFermionD FermionAction2f;
typedef typename FermionAction2f::FermionField FermionField2f;
typedef WilsonImplR FermionImplPolicy1f;
typedef DomainWallFermionD FermionAction1f;
typedef typename FermionAction1f::FermionField FermionField1f;
std::cout << "Generating eta 2f" << std::endl;
FermionField2f eta_2f(FGrid_2f);
gaussian(RNG5_2f, eta_2f);
RealD scale = std::sqrt(0.5);
eta_2f=eta_2f*scale;
std::cout << "Copying 2f->1f eta" << std::endl;
FermionField1f eta_1f(FGrid_1f);
copy2fTo1fFermionField(eta_1f, eta_2f, mu);
Real beta = 2.13;
Real light_mass = 0.01;
Real strange_mass = 0.032;
Real pv_mass = 1.0;
RealD M5 = 1.8;
//Setup the Dirac operators
std::cout << "Initializing Dirac operators" << std::endl;
FermionAction2f::ImplParams Params_2f;
Params_2f.twists[mu] = 1;
Params_2f.twists[Nd-1] = 1; //APBC in time direction
//note 'Num' and 'Den' here refer to the determinant ratio, not the operator ratio in the pseudofermion action where the two are inverted
//to my mind the Pauli Villars and 'denominator' are synonymous but the Grid convention has this as the 'Numerator' operator in the RHMC implementation
FermionAction2f NumOp_2f(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f, *UrbGrid_2f, light_mass,M5,Params_2f);
FermionAction2f DenOp_2f(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f, *UrbGrid_2f, pv_mass, M5,Params_2f);
FermionAction1f::ImplParams Params_1f;
Params_1f.boundary_phases[mu] = -1; //antiperiodic in doubled lattice in GP direction
Params_1f.boundary_phases[Nd-1] = -1;
FermionAction1f NumOp_1f(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f, *UrbGrid_1f, light_mass,M5,Params_1f);
FermionAction1f DenOp_1f(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f, *UrbGrid_1f, pv_mass, M5,Params_1f);
//Test the replication routines by running a CG on eta
double StoppingCondition = 1e-10;
double MaxCGIterations = 30000;
ConjugateGradient<FermionField2f> CG_2f(StoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField1f> CG_1f(StoppingCondition,MaxCGIterations);
NumOp_1f.ImportGauge(Umu_1f);
NumOp_2f.ImportGauge(Umu_2f);
FermionField1f test_1f(FGrid_1f);
FermionField2f test_2f(FGrid_2f);
MdagMLinearOperator<FermionAction1f, FermionField1f> Linop_1f(NumOp_1f);
MdagMLinearOperator<FermionAction2f, FermionField2f> Linop_2f(NumOp_2f);
CG_1f(Linop_1f, eta_1f, test_1f);
CG_2f(Linop_2f, eta_2f, test_2f);
RealD test_1f_norm = norm2(test_1f);
RealD test_2f_norm = norm2(test_2f);
std::cout << "Verification of replication routines: " << test_1f_norm << " " << test_2f_norm << " " << test_1f_norm - test_2f_norm << std::endl;
#if 1
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy2f> Action2f;
typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy1f> Action1f;
RationalActionParams rational_params;
rational_params.inv_pow = 2;
rational_params.lo = 1e-5;
rational_params.hi = 32;
rational_params.md_degree = 16;
rational_params.action_degree = 16;
Action2f action_2f(DenOp_2f, NumOp_2f, rational_params);
Action1f action_1f(DenOp_1f, NumOp_1f, rational_params);
#else
typedef TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy2f> Action2f;
typedef TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy1f> Action1f;
Action2f action_2f(DenOp_2f, NumOp_2f, CG_2f, CG_2f);
Action1f action_1f(DenOp_1f, NumOp_1f, CG_1f, CG_1f);
#endif
std::cout << "Action refresh" << std::endl;
action_2f.refresh(Umu_2f, eta_2f);
action_1f.refresh(Umu_1f, eta_1f);
std::cout << "Action compute post heatbath" << std::endl;
RealD S_2f = action_2f.S(Umu_2f);
RealD S_1f = action_1f.S(Umu_1f);
std::cout << "Action comparison post heatbath" << std::endl;
std::cout << S_2f << " " << S_1f << " " << S_2f-S_1f << std::endl;
//Change the gauge field between refresh and action eval else the matrix and inverse matrices all cancel and we just get |eta|^2
SU<Nc>::HotConfiguration(RNG4_2f,Umu_2f);
copy2fTo1fGaugeField(Umu_1f, Umu_2f, mu);
//Now compute the action with the new gauge field
std::cout << "Action compute post gauge field update" << std::endl;
S_2f = action_2f.S(Umu_2f);
S_1f = action_1f.S(Umu_1f);
std::cout << "Action comparison post gauge field update" << std::endl;
std::cout << S_2f << " " << S_1f << " " << S_2f-S_1f << std::endl;
Grid_finalize();
} // main