1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 19:25:56 +01:00
Grid/Grid/qcd/utils/BaryonUtils.h
2021-01-08 18:04:50 +00:00

1339 lines
56 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/BaryonUtils.h
Copyright (C) 2019
Author: Felix Erben <felix.erben@ed.ac.uk>
Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
//#include <Grid/Hadrons/Global.hpp>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
NAMESPACE_BEGIN(Grid);
template <typename FImpl>
class BaryonUtils
{
public:
typedef typename FImpl::ComplexField ComplexField;
typedef typename FImpl::FermionField FermionField;
typedef typename FImpl::PropagatorField PropagatorField;
typedef Lattice<iSpinMatrix<typename FImpl::Simd>> SpinMatrixField;
private:
template <class mobj, class robj> accelerator_inline
static void BaryonSite(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const int parity,
const bool * wick_contractions,
robj &result);
template <class mobj, class robj> accelerator_inline
static void BaryonSiteMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool * wick_contractions,
robj &result);
public:
static void WickContractions(std::string qi,
std::string qf,
bool* wick_contractions);
static void ContractBaryons(const PropagatorField &q1_left,
const PropagatorField &q2_left,
const PropagatorField &q3_left,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
const int parity,
ComplexField &baryon_corr);
static void ContractBaryonsMatrix(const PropagatorField &q1_left,
const PropagatorField &q2_left,
const PropagatorField &q3_left,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
SpinMatrixField &baryon_corr);
template <class mobj, class robj>
static void ContractBaryonsSliced(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
const int parity,
const int nt,
robj &result);
template <class mobj, class robj>
static void ContractBaryonsSlicedMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
const int nt,
robj &result);
private:
template <class mobj, class mobj2, class robj> accelerator_inline
static void BaryonGamma3ptGroup1Site(
const mobj &Dq1_ti,
const mobj2 &Dq2_spec,
const mobj2 &Dq3_spec,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result);
template <class mobj, class mobj2, class robj> accelerator_inline
static void BaryonGamma3ptGroup2Site(
const mobj2 &Dq1_spec,
const mobj &Dq2_ti,
const mobj2 &Dq3_spec,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result);
template <class mobj, class mobj2, class robj> accelerator_inline
static void BaryonGamma3ptGroup3Site(
const mobj2 &Dq1_spec,
const mobj2 &Dq2_spec,
const mobj &Dq3_ti,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result);
public:
template <class mobj>
static void BaryonGamma3pt(
const PropagatorField &q_ti,
const mobj &Dq_spec1,
const mobj &Dq_spec2,
const PropagatorField &q_tf,
int group,
int wick_contraction,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
SpinMatrixField &stn_corr);
private:
template <class mobj, class mobj2, class robj> accelerator_inline
static void SigmaToNucleonQ1EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
robj &result);
template <class mobj, class mobj2, class robj> accelerator_inline
static void SigmaToNucleonQ1NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
robj &result);
template <class mobj, class mobj2, class robj> accelerator_inline
static void SigmaToNucleonQ2EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
robj &result);
template <class mobj, class mobj2, class robj> accelerator_inline
static void SigmaToNucleonQ2NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
robj &result);
public:
template <class mobj>
static void SigmaToNucleonEye(const PropagatorField &qq_loop,
const mobj &Du_spec,
const PropagatorField &qd_tf,
const PropagatorField &qs_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
const std::string op,
SpinMatrixField &stn_corr);
template <class mobj>
static void SigmaToNucleonNonEye(const PropagatorField &qq_ti,
const PropagatorField &qq_tf,
const mobj &Du_spec,
const PropagatorField &qd_tf,
const PropagatorField &qs_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
const std::string op,
SpinMatrixField &stn_corr);
};
//This computes a baryon contraction on a lattice site, including the spin-trace of the correlation matrix
template <class FImpl>
template <class mobj, class robj> accelerator_inline
void BaryonUtils<FImpl>::BaryonSite(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_i,
const Gamma GammaB_i,
const Gamma GammaA_f,
const Gamma GammaB_f,
const int parity,
const bool * wick_contraction,
robj &result)
{
Gamma g4(Gamma::Algebra::GammaT); //needed for parity P_\pm = 0.5*(1 \pm \gamma_4)
auto D1_GAi = D1 * GammaA_i;
auto D1_GAi_g4 = D1_GAi * g4;
auto D1_GAi_P = 0.5*(D1_GAi + (Real)parity * D1_GAi_g4);
auto GAf_D1_GAi_P = GammaA_f * D1_GAi_P;
auto GBf_D1_GAi_P = GammaB_f * D1_GAi_P;
auto D2_GBi = D2 * GammaB_i;
auto GBf_D2_GBi = GammaB_f * D2_GBi;
auto GAf_D2_GBi = GammaA_f * D2_GBi;
auto GBf_D3 = GammaB_f * D3;
auto GAf_D3 = GammaA_f * D3;
Real ee;
for (int ie_f=0; ie_f < 6 ; ie_f++){
int a_f = (ie_f < 3 ? ie_f : (6-ie_f)%3 ); //epsilon[ie_n][0]; //a
int b_f = (ie_f < 3 ? (ie_f+1)%3 : (8-ie_f)%3 ); //epsilon[ie_n][1]; //b
int c_f = (ie_f < 3 ? (ie_f+2)%3 : (7-ie_f)%3 ); //epsilon[ie_n][2]; //c
int eSgn_f = (ie_f < 3 ? 1 : -1);
for (int ie_i=0; ie_i < 6 ; ie_i++){
int a_i = (ie_i < 3 ? ie_i : (6-ie_i)%3 ); //epsilon[ie_s][0]; //a'
int b_i = (ie_i < 3 ? (ie_i+1)%3 : (8-ie_i)%3 ); //epsilon[ie_s][1]; //b'
int c_i = (ie_i < 3 ? (ie_i+2)%3 : (7-ie_i)%3 ); //epsilon[ie_s][2]; //c'
int eSgn_i = (ie_i < 3 ? 1 : -1);
ee = Real(eSgn_f * eSgn_i); //epsilon_sgn[ie_n] * epsilon_sgn[ie_s];
//This is the \delta_{456}^{123} part
if (wick_contraction[0]){
for (int rho=0; rho<Ns; rho++){
auto GAf_D1_GAi_P_rr_cc = GAf_D1_GAi_P()(rho,rho)(c_f,c_i);
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
result()()() += ee * GAf_D1_GAi_P_rr_cc
* D2_GBi ()(alpha_f,beta_i)(a_f,a_i)
* GBf_D3 ()(alpha_f,beta_i)(b_f,b_i);
}}
}
}
//This is the \delta_{456}^{231} part
if (wick_contraction[1]){
for (int rho=0; rho<Ns; rho++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto D1_GAi_P_ar_ac = D1_GAi_P()(alpha_f,rho)(a_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
result()()() += ee * D1_GAi_P_ar_ac
* GBf_D2_GBi ()(alpha_f,beta_i)(b_f,a_i)
* GAf_D3 ()(rho,beta_i)(c_f,b_i);
}
}}
}
//This is the \delta_{456}^{312} part
if (wick_contraction[2]){
for (int rho=0; rho<Ns; rho++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto GBf_D1_GAi_P_ar_bc = GBf_D1_GAi_P()(alpha_f,rho)(b_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
result()()() += ee * GBf_D1_GAi_P_ar_bc
* GAf_D2_GBi ()(rho,beta_i)(c_f,a_i)
* D3 ()(alpha_f,beta_i)(a_f,b_i);
}
}}
}
//This is the \delta_{456}^{132} part
if (wick_contraction[3]){
for (int rho=0; rho<Ns; rho++){
auto GAf_D1_GAi_P_rr_cc = GAf_D1_GAi_P()(rho,rho)(c_f,c_i);
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
result()()() -= ee * GAf_D1_GAi_P_rr_cc
* GBf_D2_GBi ()(alpha_f,beta_i)(b_f,a_i)
* D3 ()(alpha_f,beta_i)(a_f,b_i);
}}
}
}
//This is the \delta_{456}^{321} part
if (wick_contraction[4]){
for (int rho=0; rho<Ns; rho++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto GBf_D1_GAi_P_ar_bc = GBf_D1_GAi_P()(alpha_f,rho)(b_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
result()()() -= ee * GBf_D1_GAi_P_ar_bc
* D2_GBi ()(alpha_f,beta_i)(a_f,a_i)
* GAf_D3 ()(rho,beta_i)(c_f,b_i);
}
}}
}
//This is the \delta_{456}^{213} part
if (wick_contraction[5]){
for (int rho=0; rho<Ns; rho++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto D1_GAi_P_ar_ac = D1_GAi_P()(alpha_f,rho)(a_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
result()()() -= ee * D1_GAi_P_ar_ac
* GAf_D2_GBi ()(rho,beta_i)(c_f,a_i)
* GBf_D3 ()(alpha_f,beta_i)(b_f,b_i);
}
}}
}
}
}
}
//New version without parity projection or trace
template <class FImpl>
template <class mobj, class robj> accelerator_inline
void BaryonUtils<FImpl>::BaryonSiteMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_i,
const Gamma GammaB_i,
const Gamma GammaA_f,
const Gamma GammaB_f,
const bool * wick_contraction,
robj &result)
{
auto D1_GAi = D1 * GammaA_i;
auto GAf_D1_GAi = GammaA_f * D1_GAi;
auto GBf_D1_GAi = GammaB_f * D1_GAi;
auto D2_GBi = D2 * GammaB_i;
auto GBf_D2_GBi = GammaB_f * D2_GBi;
auto GAf_D2_GBi = GammaA_f * D2_GBi;
auto GBf_D3 = GammaB_f * D3;
auto GAf_D3 = GammaA_f * D3;
Real ee;
for (int ie_f=0; ie_f < 6 ; ie_f++){
int a_f = (ie_f < 3 ? ie_f : (6-ie_f)%3 ); //epsilon[ie_n][0]; //a
int b_f = (ie_f < 3 ? (ie_f+1)%3 : (8-ie_f)%3 ); //epsilon[ie_n][1]; //b
int c_f = (ie_f < 3 ? (ie_f+2)%3 : (7-ie_f)%3 ); //epsilon[ie_n][2]; //c
int eSgn_f = (ie_f < 3 ? 1 : -1);
for (int ie_i=0; ie_i < 6 ; ie_i++){
int a_i = (ie_i < 3 ? ie_i : (6-ie_i)%3 ); //epsilon[ie_s][0]; //a'
int b_i = (ie_i < 3 ? (ie_i+1)%3 : (8-ie_i)%3 ); //epsilon[ie_s][1]; //b'
int c_i = (ie_i < 3 ? (ie_i+2)%3 : (7-ie_i)%3 ); //epsilon[ie_s][2]; //c'
int eSgn_i = (ie_i < 3 ? 1 : -1);
ee = Real(eSgn_f * eSgn_i); //epsilon_sgn[ie_n] * epsilon_sgn[ie_s];
//This is the \delta_{456}^{123} part
if (wick_contraction[0]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int rho_f=0; rho_f<Ns; rho_f++){
auto GAf_D1_GAi_rr_cc = GAf_D1_GAi()(rho_f,rho_i)(c_f,c_i);
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
result()(rho_f,rho_i)() += ee * GAf_D1_GAi_rr_cc
* D2_GBi ()(alpha_f,beta_i)(a_f,a_i)
* GBf_D3 ()(alpha_f,beta_i)(b_f,b_i);
}}
}}
}
//This is the \delta_{456}^{231} part
if (wick_contraction[1]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto D1_GAi_ar_ac = D1_GAi()(alpha_f,rho_i)(a_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto GBf_D2_GBi_ab_ba = GBf_D2_GBi ()(alpha_f,beta_i)(b_f,a_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() += ee * D1_GAi_ar_ac
* GBf_D2_GBi_ab_ba
* GAf_D3 ()(rho_f,beta_i)(c_f,b_i);
}
}
}}
}
//This is the \delta_{456}^{312} part
if (wick_contraction[2]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto GBf_D1_GAi_ar_bc = GBf_D1_GAi()(alpha_f,rho_i)(b_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto D3_ab_ab = D3 ()(alpha_f,beta_i)(a_f,b_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() += ee * GBf_D1_GAi_ar_bc
* GAf_D2_GBi ()(rho_f,beta_i)(c_f,a_i)
* D3_ab_ab;
}
}
}}
}
//This is the \delta_{456}^{132} part
if (wick_contraction[3]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int rho_f=0; rho_f<Ns; rho_f++){
auto GAf_D1_GAi_rr_cc = GAf_D1_GAi()(rho_f,rho_i)(c_f,c_i);
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
result()(rho_f,rho_i)() -= ee * GAf_D1_GAi_rr_cc
* GBf_D2_GBi ()(alpha_f,beta_i)(b_f,a_i)
* D3 ()(alpha_f,beta_i)(a_f,b_i);
}}
}}
}
//This is the \delta_{456}^{321} part
if (wick_contraction[4]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto GBf_D1_GAi_ar_bc = GBf_D1_GAi()(alpha_f,rho_i)(b_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto D2_GBi_ab_aa = D2_GBi()(alpha_f,beta_i)(a_f,a_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() -= ee * GBf_D1_GAi_ar_bc
* D2_GBi_ab_aa
* GAf_D3 ()(rho_f,beta_i)(c_f,b_i);
}
}
}}
}
//This is the \delta_{456}^{213} part
if (wick_contraction[5]){
for (int rho_i=0; rho_i<Ns; rho_i++){
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
auto D1_GAi_ar_ac = D1_GAi()(alpha_f,rho_i)(a_f,c_i);
for (int beta_i=0; beta_i<Ns; beta_i++){
auto GBf_D3_ab_bb = GBf_D3()(alpha_f,beta_i)(b_f,b_i);
for (int rho_f=0; rho_f<Ns; rho_f++){
result()(rho_f,rho_i)() -= ee * D1_GAi_ar_ac
* GAf_D2_GBi ()(rho_f,beta_i)(c_f,a_i)
* GBf_D3_ab_bb;
}
}
}}
}
}
}
}
/* Computes which wick contractions should be performed for a *
* baryon 2pt function given the initial and finals state quark *
* flavours. *
* The array wick_contractions must be of length 6 */
template<class FImpl>
void BaryonUtils<FImpl>::WickContractions(std::string qi, std::string qf, bool* wick_contractions) {
const int epsilon[6][3] = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}};
for (int ie=0; ie < 6 ; ie++) {
wick_contractions[ie] = (qi.size() == 3 && qf.size() == 3
&& qi[0] == qf[epsilon[ie][0]]
&& qi[1] == qf[epsilon[ie][1]]
&& qi[2] == qf[epsilon[ie][2]]);
}
}
/* The array wick_contractions must be of length 6. The order *
* corresponds to the to that shown in the Hadrons documentation *
* at https://aportelli.github.io/Hadrons-doc/#/mcontraction *
* This can be computed from the quark flavours using the *
* Wick_Contractions function above */
template<class FImpl>
void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1_left,
const PropagatorField &q2_left,
const PropagatorField &q3_left,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
const int parity,
ComplexField &baryon_corr)
{
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
assert(parity==1 || parity == -1 && "Parity must be +1 or -1");
GridBase *grid = q1_left.Grid();
autoView(vbaryon_corr , baryon_corr , AcceleratorWrite);
autoView( v1 , q1_left , AcceleratorRead);
autoView( v2 , q2_left , AcceleratorRead);
autoView( v3 , q3_left , AcceleratorRead);
Real bytes =0.;
bytes += grid->oSites() * (432.*sizeof(vComplex) + 126.*sizeof(int) + 36.*sizeof(Real));
for (int ie=0; ie < 6 ; ie++){
if(ie==0 or ie==3){
bytes += grid->oSites() * (4.*sizeof(int) + 4752.*sizeof(vComplex)) * wick_contractions[ie];
} else{
bytes += grid->oSites() * (64.*sizeof(int) + 5184.*sizeof(vComplex)) * wick_contractions[ie];
}
}
Real t=0.;
t =-usecond();
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto D1 = v1(ss);
auto D2 = v2(ss);
auto D3 = v3(ss);
typedef decltype(coalescedRead(vbaryon_corr[0])) cVec;
cVec result=Zero();
BaryonSite(D1,D2,D3,GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result);
coalescedWrite(vbaryon_corr[ss],result);
} );//end loop over lattice sites
t += usecond();
std::cout << GridLogDebug << std::setw(10) << bytes/t*1.0e6/1024/1024/1024 << " GB/s " << std::endl;
}
template<class FImpl>
void BaryonUtils<FImpl>::ContractBaryonsMatrix(const PropagatorField &q1_left,
const PropagatorField &q2_left,
const PropagatorField &q3_left,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
SpinMatrixField &baryon_corr)
{
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
GridBase *grid = q1_left.Grid();
autoView(vbaryon_corr , baryon_corr , AcceleratorWrite);
autoView( v1 , q1_left , AcceleratorRead);
autoView( v2 , q2_left , AcceleratorRead);
autoView( v3 , q3_left , AcceleratorRead);
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto D1 = v1(ss);
auto D2 = v2(ss);
auto D3 = v3(ss);
typedef decltype(coalescedRead(vbaryon_corr[0])) spinor;
spinor result=Zero();
BaryonSiteMatrix(D1,D2,D3,GammaA_left,GammaB_left,GammaA_right,GammaB_right,wick_contractions,result);
coalescedWrite(vbaryon_corr[ss],result);
} );//end loop over lattice sites
}
/* The array wick_contractions must be of length 6. The order *
* corresponds to the to that shown in the Hadrons documentation *
* at https://aportelli.github.io/Hadrons-doc/#/mcontraction *
* This can also be computed from the quark flavours using the *
* Wick_Contractions function above */
template <class FImpl>
template <class mobj, class robj>
void BaryonUtils<FImpl>::ContractBaryonsSliced(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
const int parity,
const int nt,
robj &result)
{
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
assert(parity==1 || parity == -1 && "Parity must be +1 or -1");
for (int t=0; t<nt; t++) {
BaryonSite(D1[t],D2[t],D3[t],GammaA_left,GammaB_left,GammaA_right,GammaB_right,parity,wick_contractions,result[t]);
}
}
template <class FImpl>
template <class mobj, class robj>
void BaryonUtils<FImpl>::ContractBaryonsSlicedMatrix(const mobj &D1,
const mobj &D2,
const mobj &D3,
const Gamma GammaA_left,
const Gamma GammaB_left,
const Gamma GammaA_right,
const Gamma GammaB_right,
const bool* wick_contractions,
const int nt,
robj &result)
{
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
for (int t=0; t<nt; t++) {
BaryonSiteMatrix(D1[t],D2[t],D3[t],GammaA_left,GammaB_left,GammaA_right,GammaB_right,wick_contractions,result[t]);
}
}
/***********************************************************************
* End of Baryon 2pt-function code. *
* *
* The following code is for baryonGamma3pt function *
**********************************************************************/
/* Dq1_ti is a quark line from t_i to t_J
* Dq2_spec is a quark line from t_i to t_f
* Dq3_spec is a quark line from t_i to t_f
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj> accelerator_inline
void BaryonUtils<FImpl>::BaryonGamma3ptGroup1Site(
const mobj &Dq1_ti,
const mobj2 &Dq2_spec,
const mobj2 &Dq3_spec,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result)
{
Gamma g5(Gamma::Algebra::Gamma5);
auto adjD4 = g5 * adj(Dq4_tf) * g5 ;
auto adjD4_g_D1 = adjD4 * GammaJ * Dq1_ti;
auto Gf_adjD4_g_D1 = GammaBf * adjD4_g_D1;
auto D2_Gi = Dq2_spec * GammaBi;
auto Gf_D2_Gi = GammaBf * D2_Gi;
auto Gf_D3 = GammaBf * Dq3_spec;
Real ee;
for (int ie_f=0; ie_f < 6 ; ie_f++){
int a_f = (ie_f < 3 ? ie_f : (6-ie_f)%3 ); //epsilon[ie_n][0]; //a
int b_f = (ie_f < 3 ? (ie_f+1)%3 : (8-ie_f)%3 ); //epsilon[ie_n][1]; //b
int c_f = (ie_f < 3 ? (ie_f+2)%3 : (7-ie_f)%3 ); //epsilon[ie_n][2]; //c
int eSgn_f = (ie_f < 3 ? 1 : -1);
for (int ie_i=0; ie_i < 6 ; ie_i++){
int a_i = (ie_i < 3 ? ie_i : (6-ie_i)%3 ); //epsilon[ie_s][0]; //a'
int b_i = (ie_i < 3 ? (ie_i+1)%3 : (8-ie_i)%3 ); //epsilon[ie_s][1]; //b'
int c_i = (ie_i < 3 ? (ie_i+2)%3 : (7-ie_i)%3 ); //epsilon[ie_s][2]; //c'
int eSgn_i = (ie_i < 3 ? 1 : -1);
ee = Real(eSgn_f * eSgn_i);
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
auto D2_Gi_ab_aa = D2_Gi ()(alpha_f,beta_i)(a_f,a_i);
auto Gf_D3_ab_bb = Gf_D3 ()(alpha_f,beta_i)(b_f,b_i);
auto Gf_D2_Gi_ab_ba = Gf_D2_Gi ()(alpha_f,beta_i)(b_f,a_i);
auto Dq3_spec_ab_ab = Dq3_spec ()(alpha_f,beta_i)(a_f,b_i);
for (int gamma_i=0; gamma_i<Ns; gamma_i++){
auto ee_adjD4_g_D1_ag_ac = ee * adjD4_g_D1 ()(alpha_f,gamma_i)(a_f,c_i);
auto ee_Gf_adjD4_g_D1_ag_bc = ee * Gf_adjD4_g_D1()(alpha_f,gamma_i)(b_f,c_i);
for (int gamma_f=0; gamma_f<Ns; gamma_f++){
auto ee_adjD4_g_D1_gg_cc = ee * adjD4_g_D1 ()(gamma_f,gamma_i)(c_f,c_i);
auto Dq3_spec_gb_cb = Dq3_spec ()(gamma_f,beta_i)(c_f,b_i);
auto D2_Gi_gb_ca = D2_Gi ()(gamma_f,beta_i)(c_f,a_i);
if(wick_contraction == 1) { // Do contraction I1
result()(gamma_f,gamma_i)() -= ee_adjD4_g_D1_gg_cc
* D2_Gi_ab_aa
* Gf_D3_ab_bb;
}
if(wick_contraction == 2) { // Do contraction I2
result()(gamma_f,gamma_i)() -= ee_adjD4_g_D1_ag_ac
* Gf_D2_Gi_ab_ba
* Dq3_spec_gb_cb;
}
if(wick_contraction == 3) { // Do contraction I3
result()(gamma_f,gamma_i)() -= ee_Gf_adjD4_g_D1_ag_bc
* D2_Gi_gb_ca
* Dq3_spec_ab_ab;
}
if(wick_contraction == 4) { // Do contraction I4
result()(gamma_f,gamma_i)() += ee_adjD4_g_D1_gg_cc
* Gf_D2_Gi_ab_ba
* Dq3_spec_ab_ab;
}
if(wick_contraction == 5) { // Do contraction I5
result()(gamma_f,gamma_i)() += ee_Gf_adjD4_g_D1_ag_bc
* D2_Gi_ab_aa
* Dq3_spec_gb_cb;
}
if(wick_contraction == 6) { // Do contraction I6
result()(gamma_f,gamma_i)() += ee_adjD4_g_D1_ag_ac
* D2_Gi_gb_ca
* Gf_D3_ab_bb;
}
}
}
}}
}
}
}
/* Dq1_spec is a quark line from t_i to t_f
* Dq2_ti is a quark line from t_i to t_J
* Dq3_spec is a quark line from t_i to t_f
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj> accelerator_inline
void BaryonUtils<FImpl>::BaryonGamma3ptGroup2Site(
const mobj2 &Dq1_spec,
const mobj &Dq2_ti,
const mobj2 &Dq3_spec,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result)
{
Gamma g5(Gamma::Algebra::Gamma5);
auto adjD4_g_D2_Gi = g5 * adj(Dq4_tf) * g5 * GammaJ * Dq2_ti * GammaBi;
auto Gf_adjD4_g_D2_Gi = GammaBf * adjD4_g_D2_Gi;
auto Gf_D1 = GammaBf * Dq1_spec;
auto Gf_D3 = GammaBf * Dq3_spec;
Real ee;
for (int ie_f=0; ie_f < 6 ; ie_f++){
int a_f = (ie_f < 3 ? ie_f : (6-ie_f)%3 ); //epsilon[ie_n][0]; //a
int b_f = (ie_f < 3 ? (ie_f+1)%3 : (8-ie_f)%3 ); //epsilon[ie_n][1]; //b
int c_f = (ie_f < 3 ? (ie_f+2)%3 : (7-ie_f)%3 ); //epsilon[ie_n][2]; //c
int eSgn_f = (ie_f < 3 ? 1 : -1);
for (int ie_i=0; ie_i < 6 ; ie_i++){
int a_i = (ie_i < 3 ? ie_i : (6-ie_i)%3 ); //epsilon[ie_s][0]; //a'
int b_i = (ie_i < 3 ? (ie_i+1)%3 : (8-ie_i)%3 ); //epsilon[ie_s][1]; //b'
int c_i = (ie_i < 3 ? (ie_i+2)%3 : (7-ie_i)%3 ); //epsilon[ie_s][2]; //c'
int eSgn_i = (ie_i < 3 ? 1 : -1);
ee = Real(eSgn_f * eSgn_i); //epsilon_sgn[ie_n] * epsilon_sgn[ie_s];
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
auto adjD4_g_D2_Gi_ab_aa = adjD4_g_D2_Gi ()(alpha_f,beta_i)(a_f,a_i);
auto Gf_D3_ab_bb = Gf_D3 ()(alpha_f,beta_i)(b_f,b_i);
auto Gf_adjD4_g_D2_Gi_ab_ba = Gf_adjD4_g_D2_Gi ()(alpha_f,beta_i)(b_f,a_i);
auto Dq3_spec_ab_ab = Dq3_spec ()(alpha_f,beta_i)(a_f,b_i);
for (int gamma_i=0; gamma_i<Ns; gamma_i++){
auto ee_Dq1_spec_ag_ac = ee * Dq1_spec ()(alpha_f,gamma_i)(a_f,c_i);
auto ee_Gf_D1_ag_bc = ee * Gf_D1 ()(alpha_f,gamma_i)(b_f,c_i);
for (int gamma_f=0; gamma_f<Ns; gamma_f++){
auto ee_Dq1_spec_gg_cc = ee * Dq1_spec ()(gamma_f,gamma_i)(c_f,c_i);
auto Dq3_spec_gb_cb = Dq3_spec ()(gamma_f,beta_i)(c_f,b_i);
auto adjD4_g_D2_Gi_gb_ca = adjD4_g_D2_Gi ()(gamma_f,beta_i)(c_f,a_i);
if(wick_contraction == 1) { // Do contraction II1
result()(gamma_f,gamma_i)() -= ee_Dq1_spec_gg_cc
* adjD4_g_D2_Gi_ab_aa
* Gf_D3_ab_bb;
}
if(wick_contraction == 2) { // Do contraction II2
result()(gamma_f,gamma_i)() -= ee_Dq1_spec_ag_ac
* Gf_adjD4_g_D2_Gi_ab_ba
* Dq3_spec_gb_cb;
}
if(wick_contraction == 3) { // Do contraction II3
result()(gamma_f,gamma_i)() -= ee_Gf_D1_ag_bc
* adjD4_g_D2_Gi_gb_ca
* Dq3_spec_ab_ab;
}
if(wick_contraction == 4) { // Do contraction II4
result()(gamma_f,gamma_i)() += ee_Dq1_spec_gg_cc
* Gf_adjD4_g_D2_Gi_ab_ba
* Dq3_spec_ab_ab;
}
if(wick_contraction == 5) { // Do contraction II5
result()(gamma_f,gamma_i)() += ee_Gf_D1_ag_bc
* adjD4_g_D2_Gi_ab_aa
* Dq3_spec_gb_cb;
}
if(wick_contraction == 6) { // Do contraction II6
result()(gamma_f,gamma_i)() += ee_Dq1_spec_ag_ac
* adjD4_g_D2_Gi_gb_ca
* Gf_D3_ab_bb;
}
}
}
}}
}
}
}
/* Dq1_spec is a quark line from t_i to t_f
* Dq2_spec is a quark line from t_i to t_f
* Dq3_ti is a quark line from t_i to t_J
* Dq4_tf is a quark line from t_f to t_J */
template<class FImpl>
template <class mobj, class mobj2, class robj> accelerator_inline
void BaryonUtils<FImpl>::BaryonGamma3ptGroup3Site(
const mobj2 &Dq1_spec,
const mobj2 &Dq2_spec,
const mobj &Dq3_ti,
const mobj &Dq4_tf,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
int wick_contraction,
robj &result)
{
Gamma g5(Gamma::Algebra::Gamma5);
auto adjD4_g_D3 = g5 * adj(Dq4_tf) * g5 * GammaJ * Dq3_ti;
auto Gf_adjD4_g_D3 = GammaBf * adjD4_g_D3;
auto Gf_D1 = GammaBf * Dq1_spec;
auto D2_Gi = Dq2_spec * GammaBi;
auto Gf_D2_Gi = GammaBf * D2_Gi;
Real ee;
for (int ie_f=0; ie_f < 6 ; ie_f++){
int a_f = (ie_f < 3 ? ie_f : (6-ie_f)%3 ); //epsilon[ie_n][0]; //a
int b_f = (ie_f < 3 ? (ie_f+1)%3 : (8-ie_f)%3 ); //epsilon[ie_n][1]; //b
int c_f = (ie_f < 3 ? (ie_f+2)%3 : (7-ie_f)%3 ); //epsilon[ie_n][2]; //c
int eSgn_f = (ie_f < 3 ? 1 : -1);
for (int ie_i=0; ie_i < 6 ; ie_i++){
int a_i = (ie_i < 3 ? ie_i : (6-ie_i)%3 ); //epsilon[ie_s][0]; //a'
int b_i = (ie_i < 3 ? (ie_i+1)%3 : (8-ie_i)%3 ); //epsilon[ie_s][1]; //b'
int c_i = (ie_i < 3 ? (ie_i+2)%3 : (7-ie_i)%3 ); //epsilon[ie_s][2]; //c'
int eSgn_i = (ie_i < 3 ? 1 : -1);
ee = Real(eSgn_f * eSgn_i); //epsilon_sgn[ie_n] * epsilon_sgn[ie_s];
for (int alpha_f=0; alpha_f<Ns; alpha_f++){
for (int beta_i=0; beta_i<Ns; beta_i++){
auto D2_Gi_ab_aa = D2_Gi ()(alpha_f,beta_i)(a_f,a_i);
auto Gf_adjD4_g_D3_ab_bb = Gf_adjD4_g_D3 ()(alpha_f,beta_i)(b_f,b_i);
auto Gf_D2_Gi_ab_ba = Gf_D2_Gi ()(alpha_f,beta_i)(b_f,a_i);
auto adjD4_g_D3_ab_ab = adjD4_g_D3 ()(alpha_f,beta_i)(a_f,b_i);
for (int gamma_i=0; gamma_i<Ns; gamma_i++) {
auto ee_Dq1_spec_ag_ac = ee * Dq1_spec ()(alpha_f,gamma_i)(a_f,c_i);
auto ee_Gf_D1_ag_bc = ee * Gf_D1 ()(alpha_f,gamma_i)(b_f,c_i);
for (int gamma_f=0; gamma_f<Ns; gamma_f++) {
auto ee_Dq1_spec_gg_cc = ee * Dq1_spec ()(gamma_f,gamma_i)(c_f,c_i);
auto adjD4_g_D3_gb_cb = adjD4_g_D3 ()(gamma_f,beta_i)(c_f,b_i);
auto D2_Gi_gb_ca = D2_Gi ()(gamma_f,beta_i)(c_f,a_i);
if(wick_contraction == 1) { // Do contraction III1
result()(gamma_f,gamma_i)() -= ee_Dq1_spec_gg_cc
* D2_Gi_ab_aa
* Gf_adjD4_g_D3_ab_bb;
}
if(wick_contraction == 2) { // Do contraction III2
result()(gamma_f,gamma_i)() -= ee_Dq1_spec_ag_ac
* Gf_D2_Gi_ab_ba
* adjD4_g_D3_gb_cb;
}
if(wick_contraction == 3) { // Do contraction III3
result()(gamma_f,gamma_i)() -= ee_Gf_D1_ag_bc
* D2_Gi_gb_ca
* adjD4_g_D3_ab_ab;
}
if(wick_contraction == 4) { // Do contraction III4
result()(gamma_f,gamma_i)() += ee_Dq1_spec_gg_cc
* Gf_D2_Gi_ab_ba
* adjD4_g_D3_ab_ab;
}
if(wick_contraction == 5) { // Do contraction III5
result()(gamma_f,gamma_i)() += ee_Gf_D1_ag_bc
* D2_Gi_ab_aa
* adjD4_g_D3_gb_cb;
}
if(wick_contraction == 6) { // Do contraction III6
result()(gamma_f,gamma_i)() += ee_Dq1_spec_ag_ac
* D2_Gi_gb_ca
* Gf_adjD4_g_D3_ab_bb;
}
}
}
}}
}
}
}
/* The group indicates which inital state quarks the current is *
* connected to. It must be in the range 1-3. *
* The wick_contraction must be in the range 1-6 correspond to *
* the contractions given in the Hadrons documentation at *
* https://aportelli.github.io/Hadrons-doc/#/mcontraction */
template<class FImpl>
template <class mobj>
void BaryonUtils<FImpl>::BaryonGamma3pt(
const PropagatorField &q_ti,
const mobj &Dq_spec1,
const mobj &Dq_spec2,
const PropagatorField &q_tf,
int group,
int wick_contraction,
const Gamma GammaJ,
const Gamma GammaBi,
const Gamma GammaBf,
SpinMatrixField &stn_corr)
{
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
GridBase *grid = q_tf.Grid();
autoView( vcorr , stn_corr , AcceleratorWrite);
autoView( vq_ti , q_ti , AcceleratorRead);
autoView( vq_tf , q_tf , AcceleratorRead);
Vector<mobj> my_Dq_spec{Dq_spec1,Dq_spec2};
mobj * Dq_spec_p = &my_Dq_spec[0];
if (group == 1) {
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto Dq_ti = vq_ti(ss);
auto Dq_tf = vq_tf(ss);
typedef decltype(coalescedRead(vcorr[0])) spinor;
spinor result=Zero();
BaryonGamma3ptGroup1Site(Dq_ti,Dq_spec_p[0],Dq_spec_p[1],Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
coalescedWrite(vcorr[ss],result);
});//end loop over lattice sites
} else if (group == 2) {
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto Dq_ti = vq_ti(ss);
auto Dq_tf = vq_tf(ss);
typedef decltype(coalescedRead(vcorr[0])) spinor;
spinor result=Zero();
BaryonGamma3ptGroup2Site(Dq_spec_p[0],Dq_ti,Dq_spec_p[1],Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
coalescedWrite(vcorr[ss],result);
});//end loop over lattice sites
} else if (group == 3) {
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto Dq_ti = vq_ti(ss);
auto Dq_tf = vq_tf(ss);
typedef decltype(coalescedRead(vcorr[0])) spinor;
spinor result=Zero();
BaryonGamma3ptGroup3Site(Dq_spec_p[0],Dq_spec_p[1],Dq_ti,Dq_tf,GammaJ,GammaBi,GammaBf,wick_contraction,result);
coalescedWrite(vcorr[ss],result);
});//end loop over lattice sites
}
}
/***********************************************************************
* End of BaryonGamma3pt-function code. *
* *
* The following code is for Sigma -> N rare hypeon decays *
**********************************************************************/
/* Dq_loop is a quark line from t_H to t_H
* Du_spec is a quark line from t_i to t_f
* Dd_tf is a quark line from t_f to t_H
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj> accelerator_inline
void BaryonUtils<FImpl>::SigmaToNucleonQ1EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
robj &result)
{
Gamma g5(Gamma::Algebra::Gamma5);
auto adjDd_GH_Ds = g5 * adj(Dd_tf) * g5 * Gamma_H * Ds_ti;
auto Gn_adjDd_GH_Ds = GammaB_nucl * adjDd_GH_Ds;
auto Du_Gs = Du_spec * GammaB_sigma;
auto Dq_GH = Dq_loop * Gamma_H;
auto Tr_Dq_GH = trace(Dq_GH)()()();
Real ee;
for (int ie_n=0; ie_n < 6 ; ie_n++){
int a_n = (ie_n < 3 ? ie_n : (6-ie_n)%3 ); //epsilon[ie_n][0]; //a
int b_n = (ie_n < 3 ? (ie_n+1)%3 : (8-ie_n)%3 ); //epsilon[ie_n][1]; //b
int c_n = (ie_n < 3 ? (ie_n+2)%3 : (7-ie_n)%3 ); //epsilon[ie_n][2]; //c
int eSgn_n = (ie_n < 3 ? 1 : -1);
for (int ie_s=0; ie_s < 6 ; ie_s++){
int a_s = (ie_s < 3 ? ie_s : (6-ie_s)%3 ); //epsilon[ie_s][0]; //a'
int b_s = (ie_s < 3 ? (ie_s+1)%3 : (8-ie_s)%3 ); //epsilon[ie_s][1]; //b'
int c_s = (ie_s < 3 ? (ie_s+2)%3 : (7-ie_s)%3 ); //epsilon[ie_s][2]; //c'
int eSgn_s = (ie_s < 3 ? 1 : -1);
ee = Real(eSgn_n * eSgn_s);
for (int alpha_n=0; alpha_n<Ns; alpha_n++){
for (int beta_s=0; beta_s<Ns; beta_s++){
auto Gn_adjDd_GH_Ds_ab_bb = Gn_adjDd_GH_Ds ()(alpha_n, beta_s)(b_n,b_s);
for (int gamma_s=0; gamma_s<Ns; gamma_s++){
for (int gamma_n=0; gamma_n<Ns; gamma_n++){
result()(gamma_n,gamma_s)() += ee * Gn_adjDd_GH_Ds_ab_bb
* Du_spec ()(gamma_n,gamma_s)(c_n,c_s)
* Du_Gs ()(alpha_n, beta_s)(a_n,a_s)
* Tr_Dq_GH;
result()(gamma_n,gamma_s)() -= ee * Gn_adjDd_GH_Ds_ab_bb
* Du_spec ()(alpha_n,gamma_s)(a_n,c_s)
* Du_Gs ()(gamma_n, beta_s)(c_n,a_s)
* Tr_Dq_GH;
}}
}}
}
}
}
/* Du_ti is a quark line from t_i to t_H
* Du_tf is a quark line from t_f to t_H
* Du_spec is a quark line from t_i to t_f
* Dd_tf is a quark line from t_f to t_H
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj> accelerator_inline
void BaryonUtils<FImpl>::SigmaToNucleonQ1NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
robj &result)
{
Gamma g5(Gamma::Algebra::Gamma5);
auto Du_Gs = Du_spec * GammaB_sigma;
auto adjDd_GH_Ds = g5 * adj(Dd_tf) * g5 * Gamma_H * Ds_ti;
auto Gn_adjDd_GH_Ds = GammaB_nucl * adjDd_GH_Ds;
auto adjDu_GH_Du = g5 * adj(Du_tf) * g5 * Gamma_H * Du_ti;
auto adjDu_GH_Du_Gs = adjDu_GH_Du * GammaB_sigma;
Real ee;
for (int ie_n=0; ie_n < 6 ; ie_n++){
int a_n = (ie_n < 3 ? ie_n : (6-ie_n)%3 ); //epsilon[ie_n][0]; //a
int b_n = (ie_n < 3 ? (ie_n+1)%3 : (8-ie_n)%3 ); //epsilon[ie_n][1]; //b
int c_n = (ie_n < 3 ? (ie_n+2)%3 : (7-ie_n)%3 ); //epsilon[ie_n][2]; //c
int eSgn_n = (ie_n < 3 ? 1 : -1);
for (int ie_s=0; ie_s < 6 ; ie_s++){
int a_s = (ie_s < 3 ? ie_s : (6-ie_s)%3 ); //epsilon[ie_s][0]; //a'
int b_s = (ie_s < 3 ? (ie_s+1)%3 : (8-ie_s)%3 ); //epsilon[ie_s][1]; //b'
int c_s = (ie_s < 3 ? (ie_s+2)%3 : (7-ie_s)%3 ); //epsilon[ie_s][2]; //c'
int eSgn_s = (ie_s < 3 ? 1 : -1);
ee = Real(eSgn_n * eSgn_s); //epsilon_sgn[ie_n] * epsilon_sgn[ie_s];
for (int alpha_n=0; alpha_n<Ns; alpha_n++){
for (int beta_s=0; beta_s<Ns; beta_s++){
auto Gn_adjDd_GH_Ds_ab_bb = Gn_adjDd_GH_Ds ()(alpha_n, beta_s)(b_n,b_s);
for (int gamma_s=0; gamma_s<Ns; gamma_s++){
for (int gamma_n=0; gamma_n<Ns; gamma_n++){
result()(gamma_n,gamma_s)() += ee * Gn_adjDd_GH_Ds_ab_bb
* adjDu_GH_Du ()(alpha_n,gamma_s)(a_n,c_s)
* Du_Gs ()(gamma_n, beta_s)(c_n,a_s);
result()(gamma_n,gamma_s)() += ee * Gn_adjDd_GH_Ds_ab_bb
* adjDu_GH_Du_Gs ()(gamma_n, beta_s)(c_n,a_s)
* Du_spec ()(alpha_n,gamma_s)(a_n,c_s);
result()(gamma_n,gamma_s)() -= ee * Gn_adjDd_GH_Ds_ab_bb
* adjDu_GH_Du_Gs ()(alpha_n, beta_s)(a_n,a_s)
* Du_spec ()(gamma_n,gamma_s)(c_n,c_s);
result()(gamma_n,gamma_s)() -= ee * Gn_adjDd_GH_Ds_ab_bb
* adjDu_GH_Du ()(gamma_n,gamma_s)(c_n,c_s)
* Du_Gs ()(alpha_n, beta_s)(a_n,a_s);
}}
}}
}
}
}
//Equivalent to "One-trace"
/* Dq_loop is a quark line from t_H to t_H
* Du_spec is a quark line from t_i to t_f
* Dd_tf is a quark line from t_f to t_H
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj> accelerator_inline
void BaryonUtils<FImpl>::SigmaToNucleonQ2EyeSite(const mobj &Dq_loop,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
robj &result)
{
Gamma g5(Gamma::Algebra::Gamma5);
auto adjDd_GH_Duloop_GH_Ds = g5 * adj(Dd_tf) * g5 * Gamma_H * Dq_loop * Gamma_H * Ds_ti;
auto Gn_adjDd_GH_Duloop_GH_Ds = GammaB_nucl * adjDd_GH_Duloop_GH_Ds;
auto Du_Gs = Du_spec * GammaB_sigma;
Real ee;
for (int ie_n=0; ie_n < 6 ; ie_n++){
int a_n = (ie_n < 3 ? ie_n : (6-ie_n)%3 ); //epsilon[ie_n][0]; //a
int b_n = (ie_n < 3 ? (ie_n+1)%3 : (8-ie_n)%3 ); //epsilon[ie_n][1]; //b
int c_n = (ie_n < 3 ? (ie_n+2)%3 : (7-ie_n)%3 ); //epsilon[ie_n][2]; //c
int eSgn_n = (ie_n < 3 ? 1 : -1);
for (int ie_s=0; ie_s < 6 ; ie_s++){
int a_s = (ie_s < 3 ? ie_s : (6-ie_s)%3 ); //epsilon[ie_s][0]; //a'
int b_s = (ie_s < 3 ? (ie_s+1)%3 : (8-ie_s)%3 ); //epsilon[ie_s][1]; //b'
int c_s = (ie_s < 3 ? (ie_s+2)%3 : (7-ie_s)%3 ); //epsilon[ie_s][2]; //c'
int eSgn_s = (ie_s < 3 ? 1 : -1);
ee = Real(eSgn_n * eSgn_s); //epsilon_sgn[ie_n] * epsilon_sgn[ie_s];
for (int alpha_n=0; alpha_n<Ns; alpha_n++){
for (int beta_s=0; beta_s<Ns; beta_s++){
auto Gn_adjDd_GH_Duloop_GH_Ds_ab_bb = Gn_adjDd_GH_Duloop_GH_Ds ()(alpha_n,beta_s)(b_n,b_s);
for (int gamma_s=0; gamma_s<Ns; gamma_s++){
for (int gamma_n=0; gamma_n<Ns; gamma_n++){
result()(gamma_n,gamma_s)() -= ee * Du_spec ()(gamma_n,gamma_s)(c_n,c_s)
* Du_Gs ()(alpha_n,beta_s)(a_n,a_s)
* Gn_adjDd_GH_Duloop_GH_Ds_ab_bb;
result()(gamma_n,gamma_s)() += ee * Du_Gs ()(alpha_n,gamma_s)(a_n,c_s)
* Du_spec ()(gamma_n,beta_s)(c_n,a_s)
* Gn_adjDd_GH_Duloop_GH_Ds_ab_bb;
}}
}}
}
}
}
/* Du_ti is a quark line from t_i to t_H
* Du_tf is a quark line from t_f to t_H
* Du_spec is a quark line from t_i to t_f
* Dd_tf is a quark line from t_f to t_H
* Ds_ti is a quark line from t_i to t_H */
template <class FImpl>
template <class mobj, class mobj2, class robj> accelerator_inline
void BaryonUtils<FImpl>::SigmaToNucleonQ2NonEyeSite(const mobj &Du_ti,
const mobj &Du_tf,
const mobj2 &Du_spec,
const mobj &Dd_tf,
const mobj &Ds_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
robj &result)
{
Gamma g5(Gamma::Algebra::Gamma5);
auto Du_Gs = Du_spec * GammaB_sigma;
auto adjDu_GH_Ds = g5 * adj(Du_tf) * g5 * Gamma_H * Ds_ti;
auto adjDd_GH_Du = g5 * adj(Dd_tf) * g5 * Gamma_H * Du_ti;
auto Gn_adjDd_GH_Du = GammaB_nucl * adjDd_GH_Du; // for some reason I needed to split this into two lines to avoid the compilation error 'error: identifier "Grid::Gamma::mul" is undefined in device code'
auto Gn_adjDd_GH_Du_Gs = Gn_adjDd_GH_Du * GammaB_sigma;
Real ee;
for (int ie_n=0; ie_n < 6 ; ie_n++){
int a_n = (ie_n < 3 ? ie_n : (6-ie_n)%3 ); //epsilon[ie_n][0]; //a
int b_n = (ie_n < 3 ? (ie_n+1)%3 : (8-ie_n)%3 ); //epsilon[ie_n][1]; //b
int c_n = (ie_n < 3 ? (ie_n+2)%3 : (7-ie_n)%3 ); //epsilon[ie_n][2]; //c
int eSgn_n = (ie_n < 3 ? 1 : -1);
for (int ie_s=0; ie_s < 6 ; ie_s++){
int a_s = (ie_s < 3 ? ie_s : (6-ie_s)%3 ); //epsilon[ie_s][0]; //a'
int b_s = (ie_s < 3 ? (ie_s+1)%3 : (8-ie_s)%3 ); //epsilon[ie_s][1]; //b'
int c_s = (ie_s < 3 ? (ie_s+2)%3 : (7-ie_s)%3 ); //epsilon[ie_s][2]; //c'
int eSgn_s = (ie_s < 3 ? 1 : -1);
ee = Real(eSgn_n * eSgn_s); //epsilon_sgn[ie_n] * epsilon_sgn[ie_s];
for (int alpha_n=0; alpha_n<Ns; alpha_n++){
for (int beta_s=0; beta_s<Ns; beta_s++){
auto adjDu_GH_Ds_ab_ab = adjDu_GH_Ds()(alpha_n, beta_s)(a_n,b_s);
auto Gn_adjDd_GH_Du_Gs_ab_ba = Gn_adjDd_GH_Du_Gs()(alpha_n, beta_s)(b_n,a_s);
for (int gamma_s=0; gamma_s<Ns; gamma_s++){
auto Gn_adjDd_GH_Du_ag_bc = Gn_adjDd_GH_Du()(alpha_n,gamma_s)(b_n,c_s);
for (int gamma_n=0; gamma_n<Ns; gamma_n++){
auto adjDu_GH_Ds_gb_cb = adjDu_GH_Ds()(gamma_n, beta_s)(c_n,b_s);
result()(gamma_n,gamma_s)() += ee * adjDu_GH_Ds_ab_ab
* Gn_adjDd_GH_Du_Gs_ab_ba
* Du_spec()(gamma_n,gamma_s)(c_n,c_s);
result()(gamma_n,gamma_s)() -= ee * adjDu_GH_Ds_gb_cb
* Gn_adjDd_GH_Du_Gs_ab_ba
* Du_spec()(alpha_n,gamma_s)(a_n,c_s);
result()(gamma_n,gamma_s)() += ee * adjDu_GH_Ds_gb_cb
* Gn_adjDd_GH_Du_ag_bc
* Du_Gs()(alpha_n, beta_s)(a_n,a_s);
result()(gamma_n,gamma_s)() -= ee * adjDu_GH_Ds_ab_ab
* Gn_adjDd_GH_Du_ag_bc
* Du_Gs()(gamma_n, beta_s)(c_n,a_s);
}
}
}}
}
}
}
template<class FImpl>
template <class mobj>
void BaryonUtils<FImpl>::SigmaToNucleonEye(const PropagatorField &qq_loop,
const mobj &Du_spec,
const PropagatorField &qd_tf,
const PropagatorField &qs_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
const std::string op,
SpinMatrixField &stn_corr)
{
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
GridBase *grid = qs_ti.Grid();
autoView( vcorr , stn_corr , AcceleratorWrite);
autoView( vq_loop , qq_loop , AcceleratorRead);
autoView( vd_tf , qd_tf , AcceleratorRead);
autoView( vs_ti , qs_ti , AcceleratorRead);
bool doQ1 = (op == "Q1");
bool doQ2 = (op == "Q2");
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto Dq_loop = vq_loop(ss);
auto Dd_tf = vd_tf(ss);
auto Ds_ti = vs_ti(ss);
typedef decltype(coalescedRead(vcorr[0])) spinor;
spinor result=Zero();
if(doQ1){
SigmaToNucleonQ1EyeSite(Dq_loop,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else if(doQ2){
SigmaToNucleonQ2EyeSite(Dq_loop,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else {
assert(0 && "Weak Operator not correctly specified");
}
coalescedWrite(vcorr[ss],result);
});//end loop over lattice sites
}
template<class FImpl>
template <class mobj>
void BaryonUtils<FImpl>::SigmaToNucleonNonEye(const PropagatorField &qq_ti,
const PropagatorField &qq_tf,
const mobj &Du_spec,
const PropagatorField &qd_tf,
const PropagatorField &qs_ti,
const Gamma Gamma_H,
const Gamma GammaB_sigma,
const Gamma GammaB_nucl,
const std::string op,
SpinMatrixField &stn_corr)
{
assert(Ns==4 && "Baryon code only implemented for N_spin = 4");
assert(Nc==3 && "Baryon code only implemented for N_colour = 3");
GridBase *grid = qs_ti.Grid();
autoView( vcorr , stn_corr , AcceleratorWrite );
autoView( vq_ti , qq_ti , AcceleratorRead );
autoView( vq_tf , qq_tf , AcceleratorRead );
autoView( vd_tf , qd_tf , AcceleratorRead );
autoView( vs_ti , qs_ti , AcceleratorRead );
bool doQ1 = (op == "Q1");
bool doQ2 = (op == "Q2");
accelerator_for(ss, grid->oSites(), grid->Nsimd(), {
auto Dq_ti = vq_ti(ss);
auto Dq_tf = vq_tf(ss);
auto Dd_tf = vd_tf(ss);
auto Ds_ti = vs_ti(ss);
typedef decltype(coalescedRead(vcorr[0])) spinor;
spinor result=Zero();
if(doQ1){
SigmaToNucleonQ1NonEyeSite(Dq_ti,Dq_tf,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else if(doQ2){
SigmaToNucleonQ2NonEyeSite(Dq_ti,Dq_tf,Du_spec,Dd_tf,Ds_ti,Gamma_H,GammaB_sigma,GammaB_nucl,result);
} else {
assert(0 && "Weak Operator not correctly specified");
}
coalescedWrite(vcorr[ss],result);
});//end loop over lattice sites
}
NAMESPACE_END(Grid);