1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-11 06:30:45 +01:00
Grid/tests/lanczos/Test_evec_compression.cc
Christopher Kelly e78acf77ff To LocalCoherenceLanczos, added a method to reconstruct the fine eigenvector and added some comments to aid the user
Added a test code for local coherence Lanczos with G-parity BCs
Added a test code for block eigenvector compression
2021-11-08 07:26:35 -08:00

435 lines
16 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_evec_compression.cc
Copyright (C) 2017
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/*
*
* This test generates eigenvectors using the Lanczos algorithm then attempts to use local coherence compression
* to express those vectors in terms of a basis formed from a subset. This test is useful for finding the optimal
* blocking and basis size for performing a Local Coherence Lanczos
*/
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
using namespace std;
using namespace Grid;
//For the CPS configurations we have to manually seed the RNG and deal with an incorrect factor of 2 in the plaquette metadata
void readConfiguration(LatticeGaugeFieldD &U,
const std::string &config,
bool is_cps_cfg = false){
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = false;
typedef GaugeStatistics<ConjugateGimplD> GaugeStats;
FieldMetaData header;
NerscIO::readConfiguration<GaugeStats>(U, header, config);
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = true;
}
//Lanczos parameters in CPS conventions
struct CPSLanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(CPSLanczosParams,
RealD, alpha,
RealD, beta,
int, ch_ord,
int, N_use,
int, N_get,
int, N_true_get,
RealD, stop_rsd,
int, maxits);
//Translations
ChebyParams getChebyParams() const{
ChebyParams out;
out.alpha = beta*beta; //aka lo
out.beta = alpha*alpha; //aka hi
out.Npoly = ch_ord+1;
return out;
}
int Nstop() const{ return N_true_get; }
int Nm() const{ return N_use; }
int Nk() const{ return N_get; }
};
template<class Fobj,class CComplex,int nbasis>
class LocalCoherenceCompressor{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<Fobj> FineField;
void compress(std::vector<FineField> &basis,
std::vector<CoarseField> &compressed_evecs,
const std::vector<FineField> &evecs_in,
GridBase *FineGrid,
GridBase *CoarseGrid){
int nevecs = evecs_in.size();
assert(nevecs > nbasis);
//Construct the basis
basis.resize(nbasis, FineGrid);
for(int b=0;b<nbasis;b++) basis[b] = evecs_in[b];
//Block othornormalize basis
CoarseScalar InnerProd(CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,basis);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
blockOrthogonalise(InnerProd,basis);
//The coarse grid representation is the field of vectors of block inner products
std::cout << GridLogMessage << "Compressing eigevectors" << std::endl;
compressed_evecs.resize(nevecs, CoarseGrid);
for(int i=0;i<nevecs;i++) blockProject(compressed_evecs[i], evecs_in[i], basis);
std::cout << GridLogMessage << "Compression complete" << std::endl;
}
void uncompress(FineField &evec, const int i, const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs) const{
blockPromote(compressed_evecs[i],evec,basis);
}
//Test uncompressed eigenvectors of Linop.HermOp to precision 'base_tolerance' for i<nbasis and 'base_tolerance*relax' for i>=nbasis
bool testCompression(LinearOperatorBase<FineField> &Linop,
const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs, const std::vector<RealD> &evals,
const RealD base_tolerance, const RealD relax){
GridBase* FineGrid = basis[0].Grid();
GridBase* CoarseGrid = compressed_evecs[0].Grid();
bool fail = false;
FineField evec(FineGrid), Mevec(FineGrid);
for(int i=0;i<compressed_evecs.size();i++){
std::cout << GridLogMessage << "Uncompressing evec " << i << std::endl;
uncompress(evec, i, basis, compressed_evecs);
std::cout << GridLogMessage << "Computing residual for evec " << i << std::endl;
std::cout << GridLogMessage << "Linop" << std::endl;
Linop.HermOp(evec, Mevec);
std::cout << GridLogMessage << "Linalg" << std::endl;
Mevec = Mevec - evals[i]*evec;
std::cout << GridLogMessage << "Resid" << std::endl;
RealD tol = base_tolerance * (i<nbasis ? 1. : relax);
RealD res = sqrt(norm2(Mevec));
std::cout << GridLogMessage << "Evec idx " << i << " res " << res << " tol " << tol << std::endl;
if(res > tol) fail = true;
}
return fail;
}
};
template<class Fobj,class CComplex,int nbasis>
void compareBlockPromoteTimings(const std::vector<Lattice<Fobj> > &basis, const std::vector<Lattice<iVector<CComplex,nbasis > > > &compressed_evecs){
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CComplex> CoarseScalar;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<Fobj> FineField;
GridStopWatch timer;
GridBase* FineGrid = basis[0].Grid();
GridBase* CoarseGrid = compressed_evecs[0].Grid();
FineField v1(FineGrid), v2(FineGrid);
//Start with a cold start
for(int i=0;i<basis.size();i++){
autoView( b_ , basis[i], CpuWrite);
}
for(int i=0;i<compressed_evecs.size();i++){
autoView( b_ , compressed_evecs[i], CpuWrite);
}
{
autoView( b_, v1, CpuWrite );
}
timer.Start();
blockPromote(compressed_evecs[0],v1,basis);
timer.Stop();
std::cout << GridLogMessage << "Time for cold blockPromote v1 " << timer.Elapsed() << std::endl;
//Test to ensure it is actually doing a cold start by repeating
for(int i=0;i<basis.size();i++){
autoView( b_ , basis[i], CpuWrite);
}
for(int i=0;i<compressed_evecs.size();i++){
autoView( b_ , compressed_evecs[i], CpuWrite);
}
{
autoView( b_, v1, CpuWrite );
}
timer.Reset();
timer.Start();
blockPromote(compressed_evecs[0],v1,basis);
timer.Stop();
std::cout << GridLogMessage << "Time for cold blockPromote v1 repeat (should be the same as above) " << timer.Elapsed() << std::endl;
}
//Note: because we rely upon physical properties we must use a "real" gauge configuration
int main (int argc, char ** argv) {
Grid_init(&argc,&argv);
GridLogIRL.TimingMode(1);
std::vector<int> blockSize = {2,2,2,2,2};
std::vector<int> GparityDirs = {1,1,1}; //1 for each GP direction
int Ls = 12;
RealD mass = 0.01;
RealD M5 = 1.8;
bool is_cps_cfg = false;
CPSLanczosParams fine;
fine.alpha = 2;
fine.beta = 0.1;
fine.ch_ord = 100;
fine.N_use = 70;
fine.N_get = 60;
fine.N_true_get = 60;
fine.stop_rsd = 1e-8;
fine.maxits = 10000;
double coarse_relax_tol = 1e5;
if(argc < 3){
std::cout << GridLogMessage << "Usage: <exe> <config> <gparity dirs> <options>" << std::endl;
std::cout << GridLogMessage << "<gparity dirs> should have the format a.b.c where a,b,c are 0,1 depending on whether there are G-parity BCs in that direction" << std::endl;
std::cout << GridLogMessage << "Options:" << std::endl;
std::cout << GridLogMessage << "--Ls <value> : Set Ls (default 12)" << std::endl;
std::cout << GridLogMessage << "--mass <value> : Set the mass (default 0.01)" << std::endl;
std::cout << GridLogMessage << "--block <value> : Set the block size. Format should be a.b.c.d.e where a-e are the block extents (default 2.2.2.2.2)" << std::endl;
std::cout << GridLogMessage << "--is_cps_cfg : Indicate that the configuration was generated with CPS where until recently the stored plaquette was wrong by a factor of 2" << std::endl;
std::cout << GridLogMessage << "--write_irl_templ: Write a template for the parameters file of the Lanczos to \"irl_templ.xml\"" << std::endl;
std::cout << GridLogMessage << "--read_irl_fine <filename>: Real the parameters file for the fine Lanczos" << std::endl;
std::cout << GridLogMessage << "--write_fine <filename stub>: Write fine evecs/evals to filename starting with the stub" << std::endl;
std::cout << GridLogMessage << "--read_fine <filename stub>: Read fine evecs/evals from filename starting with the stub" << std::endl;
std::cout << GridLogMessage << "--coarse_relax_tol : Set the relaxation parameter for evaluating the residual of the reconstructed eigenvectors outside of the basis (default 1e5)" << std::endl;
Grid_finalize();
return 1;
}
std::string config = argv[1];
GridCmdOptionIntVector(argv[2], GparityDirs);
assert(GparityDirs.size() == 3);
bool write_fine = false;
std::string write_fine_file;
bool read_fine = false;
std::string read_fine_file;
for(int i=3;i<argc;i++){
std::string sarg = argv[i];
if(sarg == "--Ls"){
Ls = std::stoi(argv[i+1]);
std::cout << GridLogMessage << "Set Ls to " << Ls << std::endl;
}else if(sarg == "--mass"){
std::istringstream ss(argv[i+1]); ss >> mass;
std::cout << GridLogMessage << "Set quark mass to " << mass << std::endl;
}else if(sarg == "--block"){
GridCmdOptionIntVector(argv[i+1], blockSize);
assert(blockSize.size() == 5);
std::cout << GridLogMessage << "Set block size to ";
for(int q=0;q<5;q++) std::cout << blockSize[q] << " ";
std::cout << std::endl;
}else if(sarg == "--is_cps_cfg"){
is_cps_cfg = true;
}else if(sarg == "--write_irl_templ"){
XmlWriter writer("irl_templ.xml");
write(writer,"Params",fine);
Grid_finalize();
return 0;
}else if(sarg == "--read_irl_fine"){
std::cout << GridLogMessage << "Reading fine IRL params from " << argv[i+1] << std::endl;
XmlReader reader(argv[i+1]);
read(reader, "Params", fine);
}else if(sarg == "--write_fine"){
write_fine = true;
write_fine_file = argv[i+1];
}else if(sarg == "--read_fine"){
read_fine = true;
read_fine_file = argv[i+1];
}else if(sarg == "--coarse_relax_tol"){
std::istringstream ss(argv[i+1]); ss >> coarse_relax_tol;
std::cout << GridLogMessage << "Set coarse IRL relaxation parameter to " << coarse_relax_tol << std::endl;
}
}
//Fine grids
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
//Setup G-parity BCs
assert(Nd == 4);
std::vector<int> dirs4(4);
for(int i=0;i<3;i++) dirs4[i] = GparityDirs[i];
dirs4[3] = 0; //periodic gauge BC in time
std::cout << GridLogMessage << "Gauge BCs: " << dirs4 << std::endl;
ConjugateGimplD::setDirections(dirs4); //gauge BC
GparityWilsonImplD::ImplParams Params;
for(int i=0;i<Nd-1;i++) Params.twists[i] = GparityDirs[i]; //G-parity directions
Params.twists[Nd-1] = 1; //APBC in time direction
std::cout << GridLogMessage << "Fermion BCs: " << Params.twists << std::endl;
//Read the gauge field
LatticeGaugeField Umu(UGrid);
readConfiguration(Umu, config, is_cps_cfg);
//Setup the coarse grids
auto fineLatt = GridDefaultLatt();
Coordinate coarseLatt(4);
for (int d=0;d<4;d++){
coarseLatt[d] = fineLatt[d]/blockSize[d]; assert(coarseLatt[d]*blockSize[d]==fineLatt[d]);
}
std::cout << GridLogMessage<< " 5d coarse lattice is ";
for (int i=0;i<4;i++){
std::cout << coarseLatt[i]<<"x";
}
int cLs = Ls/blockSize[4]; assert(cLs*blockSize[4]==Ls);
std::cout << cLs<<std::endl;
GridCartesian * CoarseGrid4 = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * CoarseGrid4rb = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
GridCartesian * CoarseGrid5 = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
const int nbasis= 60;
typedef vTComplex CComplex;
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CComplex> CoarseScalar;
typedef Lattice<CoarseSiteVector> CoarseField;
//Dirac operator
GparityDomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5, Params);
typedef GparityDomainWallFermionD::FermionField FermionField;
SchurDiagTwoOperator<GparityDomainWallFermionD,FermionField> SchurOp(action);
typedef GparityWilsonImplD::SiteSpinor SiteSpinor;
//Do the fine Lanczos
std::vector<RealD> evals;
std::vector<FermionField> evecs;
if(read_fine){
evals.resize(fine.N_true_get);
evecs.resize(fine.N_true_get, FrbGrid);
std::string evals_file = read_fine_file + "_evals.xml";
std::string evecs_file = read_fine_file + "_evecs.scidac";
std::cout << GridLogIRL<< "Reading evals from "<<evals_file<<std::endl;
XmlReader RDx(evals_file);
read(RDx,"evals",evals);
assert(evals.size()==fine.N_true_get);
std::cout << GridLogIRL<< "Reading evecs from "<<evecs_file<<std::endl;
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(evecs_file);
for(int k=0;k<fine.N_true_get;k++) {
evecs[k].Checkerboard()=Odd;
RD.readScidacFieldRecord(evecs[k],record);
}
RD.close();
}else{
int Nstop = fine.Nstop();
int Nm = fine.Nm();
int Nk = fine.Nk();
RealD resid = fine.stop_rsd;
int MaxIt = fine.maxits;
assert(nbasis<=Nm);
Chebyshev<FermionField> Cheby(fine.getChebyParams());
FunctionHermOp<FermionField> ChebyOp(Cheby,SchurOp);
PlainHermOp<FermionField> Op(SchurOp);
evals.resize(Nm);
evecs.resize(Nm,FrbGrid);
ImplicitlyRestartedLanczos<FermionField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,0,0);
FermionField src(FrbGrid);
typedef typename FermionField::scalar_type Scalar;
src=Scalar(1.0);
src.Checkerboard() = Odd;
int Nconv;
IRL.calc(evals, evecs,src,Nconv,false);
if(write_fine){
std::string evals_file = write_fine_file + "_evals.xml";
std::string evecs_file = write_fine_file + "_evecs.scidac";
std::cout << GridLogIRL<< "Writing evecs to "<<evecs_file<<std::endl;
emptyUserRecord record;
Grid::ScidacWriter WR(FrbGrid->IsBoss());
WR.open(evecs_file);
for(int k=0;k<evecs.size();k++) {
WR.writeScidacFieldRecord(evecs[k],record);
}
WR.close();
std::cout << GridLogIRL<< "Writing evals to "<<evals_file<<std::endl;
XmlWriter WRx(evals_file);
write(WRx,"evals",evals);
}
}
//Do the compression
LocalCoherenceCompressor<SiteSpinor,vTComplex,nbasis> compressor;
std::vector<FermionField> basis(nbasis,FrbGrid);
std::vector<CoarseField> compressed_evecs(evecs.size(),CoarseGrid5);
compressor.compress(basis, compressed_evecs, evecs, FrbGrid, CoarseGrid5);
compareBlockPromoteTimings(basis, compressed_evecs);
//Test the result
assert( compressor.testCompression(SchurOp, basis, compressed_evecs, evals, fine.stop_rsd, coarse_relax_tol) );
Grid_finalize();
}