mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
4dc7c36aa8
Tested by doubling lattice in t-direction.
299 lines
11 KiB
C++
299 lines
11 KiB
C++
#ifndef GRID_QCD_FERMION_OPERATOR_H
|
|
#define GRID_QCD_FERMION_OPERATOR_H
|
|
|
|
namespace Grid {
|
|
|
|
namespace QCD {
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// Hardwire to four spinors, allow to select
|
|
// between gauge representation rank bc's, flavours etc.
|
|
// and single/double precision.
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
template<class S,int Nrepresentation=Nc>
|
|
class WilsonImpl {
|
|
public:
|
|
|
|
typedef S Simd;
|
|
|
|
template<typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Ns> >;
|
|
template<typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Nhs> >;
|
|
|
|
template<typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
|
|
template<typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd >;
|
|
template<typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds >;
|
|
|
|
typedef iImplSpinor <Simd> SiteSpinor;
|
|
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
|
typedef iImplGaugeLink <Simd> SiteGaugeLink;
|
|
typedef iImplGaugeField<Simd> SiteGaugeField;
|
|
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
|
|
|
|
typedef Lattice<SiteSpinor> FermionField;
|
|
typedef Lattice<SiteGaugeLink> GaugeLinkField; // bit ugly naming; polarised gauge field, lorentz... all ugly
|
|
typedef Lattice<SiteGaugeField> GaugeField;
|
|
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
|
|
|
typedef WilsonCompressor<SiteHalfSpinor,SiteSpinor> Compressor;
|
|
|
|
static inline void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const SiteHalfSpinor &chi,int mu,StencilEntry *SE,CartesianStencil &St){
|
|
mult(&phi(),&U(mu),&chi());
|
|
}
|
|
static inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
|
{
|
|
conformable(Uds._grid,GaugeGrid);
|
|
conformable(Umu._grid,GaugeGrid);
|
|
GaugeLinkField U(GaugeGrid);
|
|
for(int mu=0;mu<Nd;mu++){
|
|
U = PeekIndex<LorentzIndex>(Umu,mu);
|
|
PokeIndex<LorentzIndex>(Uds,U,mu);
|
|
U = adj(Cshift(U,mu,-1));
|
|
PokeIndex<LorentzIndex>(Uds,U,mu+4);
|
|
}
|
|
}
|
|
static inline void InsertForce(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu){
|
|
GaugeLinkField link(mat._grid);
|
|
link = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
|
|
PokeIndex<LorentzIndex>(mat,link,mu);
|
|
}
|
|
|
|
};
|
|
|
|
typedef WilsonImpl<vComplex,Nc> WilsonImplR; // Real.. whichever prec
|
|
typedef WilsonImpl<vComplexF,Nc> WilsonImplF; // Float
|
|
typedef WilsonImpl<vComplexD,Nc> WilsonImplD; // Double
|
|
|
|
template<class S,int Nrepresentation=Nc>
|
|
class GparityWilsonImpl {
|
|
public:
|
|
|
|
typedef S Simd;
|
|
|
|
template<typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp >;
|
|
template<typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp >;
|
|
template<typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd >;
|
|
|
|
template<typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
|
|
template<typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds >, Ngp >;
|
|
|
|
typedef iImplSpinor <Simd> SiteSpinor;
|
|
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
|
typedef iImplGaugeLink <Simd> SiteGaugeLink;
|
|
typedef iImplGaugeField<Simd> SiteGaugeField;
|
|
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
|
|
|
|
typedef Lattice<SiteSpinor> FermionField;
|
|
typedef Lattice<SiteGaugeLink> GaugeLinkField; // bit ugly naming; polarised gauge field, lorentz... all ugly
|
|
typedef Lattice<SiteGaugeField> GaugeField;
|
|
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
|
|
|
// typedef GparityWilsonCompressor<SiteHalfSpinor,SiteSpinor> Compressor;
|
|
typedef WilsonCompressor<SiteHalfSpinor,SiteSpinor> Compressor;
|
|
|
|
// provide the multiply by link that is differentiated between Gparity (with flavour index) and
|
|
// non-Gparity
|
|
static inline void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const SiteHalfSpinor &chi,int mu,StencilEntry *SE,CartesianStencil &St){
|
|
// FIXME; need to be more careful. If this is a simd direction we are still stuffed
|
|
// Need access to _simd_layout[mu]. mu is not necessarily dim.
|
|
typedef SiteHalfSpinor vobj;
|
|
typedef typename SiteHalfSpinor::scalar_object sobj;
|
|
|
|
vobj vtmp;
|
|
sobj stmp;
|
|
std::vector<int> gpbc({0,0,0,1,0,0,0,1});
|
|
|
|
GridBase *grid = St._grid;
|
|
|
|
const int Nsimd = grid->Nsimd();
|
|
|
|
int direction = St._directions[mu];
|
|
int distance = St._distances[mu];
|
|
int ptype = St._permute_type[mu];
|
|
int sl = St._grid->_simd_layout[direction];
|
|
|
|
// assert our assumptions
|
|
assert((distance==1)||(distance==-1)); // nearest neighbour stencil hard code
|
|
assert((sl==1)||(sl==2));
|
|
|
|
std::vector<int> icoor;
|
|
|
|
if ( SE->_around_the_world && gpbc[mu] ) {
|
|
if ( sl == 2 ) {
|
|
|
|
// std::cout << "multLink for mu= "<<mu<<" simd length "<<sl<<std::endl;
|
|
|
|
std::vector<sobj> vals(Nsimd);
|
|
extract(chi,vals);
|
|
|
|
for(int s=0;s<Nsimd;s++){
|
|
|
|
grid->iCoorFromIindex(icoor,s);
|
|
|
|
assert((icoor[direction]==0)||(icoor[direction]==1));
|
|
|
|
int permute_lane;
|
|
if ( distance == 1) {
|
|
permute_lane = icoor[direction]?1:0;
|
|
} else {
|
|
permute_lane = icoor[direction]?0:1;
|
|
}
|
|
|
|
if ( permute_lane ) {
|
|
stmp(0) = vals[s](1);
|
|
stmp(1) = vals[s](0);
|
|
vals[s] = stmp;
|
|
}
|
|
}
|
|
|
|
merge(vtmp,vals);
|
|
|
|
} else {
|
|
vtmp(0) = chi(1);
|
|
vtmp(1) = chi(0);
|
|
}
|
|
mult(&phi(0),&U(0)(mu),&vtmp(0));
|
|
mult(&phi(1),&U(1)(mu),&vtmp(1));
|
|
|
|
} else {
|
|
mult(&phi(0),&U(0)(mu),&chi(0));
|
|
mult(&phi(1),&U(1)(mu),&chi(1));
|
|
}
|
|
|
|
}
|
|
|
|
static inline void InsertForce(GaugeField &mat,const FermionField &Btilde,const FermionField &A,int mu){
|
|
// Fixme
|
|
return;
|
|
}
|
|
static inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
|
{
|
|
conformable(Uds._grid,GaugeGrid);
|
|
conformable(Umu._grid,GaugeGrid);
|
|
|
|
GaugeLinkField Utmp(GaugeGrid);
|
|
GaugeLinkField U(GaugeGrid);
|
|
GaugeLinkField Uconj(GaugeGrid);
|
|
|
|
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
|
|
|
std::vector<int> gpdirs({0,0,0,1});
|
|
|
|
for(int mu=0;mu<Nd;mu++){
|
|
|
|
LatticeCoordinate(coor,mu);
|
|
|
|
U = PeekIndex<LorentzIndex>(Umu,mu);
|
|
Uconj = conjugate(U);
|
|
|
|
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
|
|
|
|
if ( gpdirs[mu] ) {
|
|
Uconj = where(coor==neglink,-Uconj,Uconj);
|
|
}
|
|
|
|
PARALLEL_FOR_LOOP
|
|
for(auto ss=U.begin();ss<U.end();ss++){
|
|
Uds[ss](0)(mu) = U[ss]();
|
|
Uds[ss](1)(mu) = Uconj[ss]();
|
|
}
|
|
|
|
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
|
|
Uconj = adj(Cshift(Uconj,mu,-1));
|
|
|
|
Utmp = U;
|
|
if ( gpdirs[mu] ) {
|
|
Utmp = where(coor==0,Uconj,Utmp);
|
|
}
|
|
|
|
PARALLEL_FOR_LOOP
|
|
for(auto ss=U.begin();ss<U.end();ss++){
|
|
Uds[ss](0)(mu+4) = Utmp[ss]();
|
|
}
|
|
|
|
Utmp = Uconj;
|
|
if ( gpdirs[mu] ) {
|
|
Utmp = where(coor==0,U,Utmp);
|
|
}
|
|
|
|
PARALLEL_FOR_LOOP
|
|
for(auto ss=U.begin();ss<U.end();ss++){
|
|
Uds[ss](1)(mu+4) = Utmp[ss]();
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
typedef GparityWilsonImpl<vComplex,Nc> GparityWilsonImplR; // Real.. whichever prec
|
|
typedef GparityWilsonImpl<vComplexF,Nc> GparityWilsonImplF; // Float
|
|
typedef GparityWilsonImpl<vComplexD,Nc> GparityWilsonImplD; // Double
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Four component fermions
|
|
// Should type template the vector and gauge types
|
|
// Think about multiple representations
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
template<class Impl>
|
|
class FermionOperator : public CheckerBoardedSparseMatrixBase<typename Impl::FermionField>
|
|
{
|
|
public:
|
|
#include <qcd/action/fermion/FermionImplTypedefs.h>
|
|
public:
|
|
|
|
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
|
|
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
|
|
|
|
virtual GridBase *FermionGrid(void) =0;
|
|
virtual GridBase *FermionRedBlackGrid(void) =0;
|
|
virtual GridBase *GaugeGrid(void) =0;
|
|
virtual GridBase *GaugeRedBlackGrid(void) =0;
|
|
|
|
// override multiply
|
|
virtual RealD M (const FermionField &in, FermionField &out)=0;
|
|
virtual RealD Mdag (const FermionField &in, FermionField &out)=0;
|
|
|
|
// half checkerboard operaions
|
|
virtual void Meooe (const FermionField &in, FermionField &out)=0;
|
|
virtual void MeooeDag (const FermionField &in, FermionField &out)=0;
|
|
virtual void Mooee (const FermionField &in, FermionField &out)=0;
|
|
virtual void MooeeDag (const FermionField &in, FermionField &out)=0;
|
|
virtual void MooeeInv (const FermionField &in, FermionField &out)=0;
|
|
virtual void MooeeInvDag (const FermionField &in, FermionField &out)=0;
|
|
|
|
// non-hermitian hopping term; half cb or both
|
|
virtual void Dhop (const FermionField &in, FermionField &out,int dag)=0;
|
|
virtual void DhopOE(const FermionField &in, FermionField &out,int dag)=0;
|
|
virtual void DhopEO(const FermionField &in, FermionField &out,int dag)=0;
|
|
virtual void DhopDir(const FermionField &in, FermionField &out,int dir,int disp)=0; // implemented by WilsonFermion and WilsonFermion5D
|
|
|
|
// force terms; five routines; default to Dhop on diagonal
|
|
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDeriv(mat,U,V,dag);};
|
|
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivOE(mat,U,V,dag);};
|
|
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivEO(mat,U,V,dag);};
|
|
virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
|
|
virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
|
|
|
|
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
|
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
|
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
|
|
|
|
|
virtual void Mdiag (const FermionField &in, FermionField &out) { Mooee(in,out);}; // Same as Mooee applied to both CB's
|
|
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp)=0; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
|
|
|
|
///////////////////////////////////////////////
|
|
// Updates gauge field during HMC
|
|
///////////////////////////////////////////////
|
|
virtual void ImportGauge(const GaugeField & _U)=0;
|
|
|
|
};
|
|
|
|
}
|
|
}
|
|
|
|
#endif
|