mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-11 22:50:45 +01:00
692 lines
27 KiB
C++
692 lines
27 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/serialisation/BaseIO.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Antonin Portelli <antonin.portelli@me.com>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_SERIALISATION_ABSTRACT_READER_H
|
|
#define GRID_SERIALISATION_ABSTRACT_READER_H
|
|
|
|
#include <type_traits>
|
|
#include <Grid/tensors/Tensors.h>
|
|
#include <Grid/serialisation/VectorUtils.h>
|
|
#include <Grid/Eigen/unsupported/CXX11/Tensor>
|
|
|
|
namespace Grid {
|
|
namespace EigenIO {
|
|
template<typename T> struct is_complex : public std::false_type {};
|
|
template<typename T> struct is_complex<std::complex<T>>
|
|
: std::integral_constant<bool, std::is_arithmetic<T>::value> {};
|
|
|
|
// Eigen tensors can be composed of arithmetic scalar and complex types
|
|
template<typename T> struct is_scalar : std::integral_constant<bool,
|
|
std::is_arithmetic<T>::value || is_complex<T>::value> {};
|
|
|
|
// Eigen tensors can also be composed of a limited number of containers
|
|
// NB: grid tensors (iScalar, iVector, iMatrix) have stricter limits on complex types
|
|
template <typename T> struct is_container : public std::false_type {};
|
|
template <typename T> struct is_container<iScalar<T>> : public std::true_type {};
|
|
template <typename T, int N> struct is_container<iVector<T, N>> : public std::true_type {};
|
|
template <typename T, int N> struct is_container<iMatrix<T, N>> : public std::true_type {};
|
|
template <typename T, std::size_t N> struct is_container<std::array<T, N>> : public std::true_type {};
|
|
|
|
// Is this an Eigen tensor
|
|
template<typename T> struct is_tensor : std::integral_constant<bool,
|
|
std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value> {};
|
|
|
|
// Is this an Eigen tensor of a supported scalar
|
|
template<typename T> struct is_tensor_of_scalar : std::integral_constant<bool,
|
|
is_tensor<T>::value && is_scalar<typename T::Scalar>::value> {};
|
|
|
|
// Is this an Eigen tensor of a supported container
|
|
template<typename T> struct is_tensor_of_container : std::integral_constant<bool,
|
|
is_tensor<T>::value && is_container<typename T::Scalar>::value> {};
|
|
|
|
// These traits describe the Eigen tensor scalar objects supported for IO
|
|
// Mostly intended for grid tensors, i.e. compositions of iScalar, iVector and iMatrix
|
|
// but also supports fixed size arrays
|
|
template <typename T, typename C = void> struct Traits {}; // C needed for specialisation
|
|
// This defines the bottom level - i.e. it's a description of the underlying scalar
|
|
template <typename T> struct Traits<T, typename std::enable_if<is_scalar<T>::value, void>::type> {
|
|
static constexpr unsigned int depth = 0; // How many levels of Grid Tensor there are (TensorLevel)
|
|
static constexpr unsigned int rank = 0; // The rank of the grid tensor (i.e. how many indices used)
|
|
static constexpr unsigned int rank_non_trivial = 0; // As per rank, but excludes those of dimension 1
|
|
static constexpr unsigned int count = 1; // total number of elements (i.e. product of dimensions)
|
|
using scalar_type = T; // Type of the underlying scalar
|
|
static constexpr std::size_t scalar_size = sizeof(T); // Size of the underlying scalar in bytes
|
|
static constexpr std::size_t size = scalar_size * count; // total size of elements in bytes
|
|
static constexpr std::size_t Dimension(unsigned int dim) { return 0; } // Dimension size
|
|
static constexpr std::size_t DimensionNT(unsigned int dim) { return 0; } // non-trivial dim size
|
|
// e.g. iScalar<iVector<Complex,1>>
|
|
// depth = 2
|
|
// rank = 1
|
|
// rank_non_trivial = 0
|
|
// count = 1
|
|
// e.g. iVector<iMatrix<Complex,3>,4>
|
|
// depth = 2
|
|
// rank = 3
|
|
// rank_non_trivial = 3
|
|
// count = 36
|
|
// e.g. iScalar<iVector<iMatrix<Complex,4>,3>>
|
|
// depth = 3
|
|
// rank = 3
|
|
// rank_non_trivial = 3
|
|
// count = 48
|
|
};
|
|
template <typename T> struct Traits<iScalar<T>> {
|
|
static constexpr unsigned int depth = 1 + Traits<T>::depth;
|
|
static constexpr unsigned int rank = 0 + Traits<T>::rank;
|
|
static constexpr unsigned int rank_non_trivial = 0 + Traits<T>::rank_non_trivial;
|
|
static constexpr unsigned int count = 1 * Traits<T>::count;
|
|
using scalar_type = typename Traits<T>::scalar_type;
|
|
static constexpr std::size_t scalar_size = Traits<T>::scalar_size;
|
|
static constexpr std::size_t size = scalar_size * count;
|
|
static constexpr std::size_t Dimension(unsigned int dim) {
|
|
return ( dim == 0 ) ? 1 : Traits<T>::Dimension(dim - 1); }
|
|
static constexpr std::size_t DimensionNT(unsigned int dim) {
|
|
return Traits<T>::DimensionNT(dim); }
|
|
};
|
|
template <typename T, int N> struct Traits<iVector<T, N>> {
|
|
static constexpr unsigned int depth = 1 + Traits<T>::depth;
|
|
static constexpr unsigned int rank = 1 + Traits<T>::rank;
|
|
static constexpr unsigned int rank_non_trivial = (N>1 ? 1 : 0) + Traits<T>::rank_non_trivial;
|
|
static constexpr unsigned int count = N * Traits<T>::count;
|
|
using scalar_type = typename Traits<T>::scalar_type;
|
|
static constexpr std::size_t scalar_size = Traits<T>::scalar_size;
|
|
static constexpr std::size_t size = scalar_size * count;
|
|
static constexpr std::size_t Dimension(unsigned int dim) {
|
|
return ( dim == 0 ) ? N : Traits<T>::Dimension(dim - 1); }
|
|
static constexpr std::size_t DimensionNT(unsigned int dim) {
|
|
return ( N == 1 ) ? Traits<T>::DimensionNT(dim) : ( dim == 0 ) ? N : Traits<T>::DimensionNT(dim - 1);
|
|
}
|
|
};
|
|
template <typename T, int N> struct Traits<iMatrix<T, N>> {
|
|
static constexpr unsigned int depth = 1 + Traits<T>::depth;
|
|
static constexpr unsigned int rank = 2 + Traits<T>::rank;
|
|
static constexpr unsigned int rank_non_trivial = (N>1 ? 2 : 0) + Traits<T>::rank_non_trivial;
|
|
static constexpr unsigned int count = N * N * Traits<T>::count;
|
|
using scalar_type = typename Traits<T>::scalar_type;
|
|
static constexpr std::size_t scalar_size = Traits<T>::scalar_size;
|
|
static constexpr std::size_t size = scalar_size * count;
|
|
static constexpr std::size_t Dimension(unsigned int dim) {
|
|
return ( dim == 0 || dim == 1 ) ? N : Traits<T>::Dimension(dim - 2); }
|
|
static constexpr std::size_t DimensionNT(unsigned int dim) {
|
|
return ( N == 1 ) ? Traits<T>::DimensionNT(dim) : ( dim == 0 || dim == 1 ) ? N : Traits<T>::DimensionNT(dim - 2);
|
|
}
|
|
};
|
|
template <typename T, int N> struct Traits<std::array<T, N>> : Traits<iVector<T, N>> {};
|
|
// Tensors have the same traits as their top-level scalar
|
|
// Shouldn't be necessary ... but I make the mistake of getting traits of the tensor so often
|
|
// that I am tempted to define this.
|
|
// HOWEVER, Eigen tensors have a dynamic size flavour, but the scalars are (currently) all fixed size
|
|
//template <typename T> struct Traits<T, typename std::enable_if<is_tensor<T>::value, void>::type> : Traits<T> {};
|
|
}
|
|
|
|
// Helper to allow iteration through an Eigen::Tensor (using a lambda)
|
|
template <typename ETensor, typename Lambda>
|
|
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
|
|
for_all( ETensor &ET, Lambda lambda )
|
|
{
|
|
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later
|
|
const std::size_t NumScalars = ET.size();
|
|
assert( NumScalars > 0 );
|
|
// Assemble a vector containing all the non-trivial dimensions (i.e. dimensions > 1)
|
|
unsigned int ScalarElementCount{1};
|
|
std::vector<size_t> NonTrivialDims;
|
|
NonTrivialDims.reserve(ET.NumDimensions + EigenIO::Traits<Scalar>::rank_non_trivial);
|
|
for(auto i = 0; i < ET.NumDimensions; i++ ) {
|
|
auto dim = ET.dimension(i);
|
|
if( dim <= 1 ) {
|
|
assert( dim == 1 ); // Not expecting dimension to be <= 0
|
|
} else {
|
|
size_t s = static_cast<size_t>(dim);
|
|
assert( s == dim ); // check we didn't lose anything in the conversion
|
|
NonTrivialDims.push_back(s);
|
|
ScalarElementCount *= s;
|
|
}
|
|
}
|
|
// Check that the number of containers is correct
|
|
assert( NumScalars == ScalarElementCount );
|
|
// If the Scalar is actually a container, add the inner Scalar's non-trivial dimensions
|
|
size_t InnerScalarCount{1};
|
|
for(auto i = 0; i < EigenIO::Traits<Scalar>::rank_non_trivial; i++ ) {
|
|
auto dim = EigenIO::Traits<Scalar>::DimensionNT(i);
|
|
assert( dim > 1 );
|
|
NonTrivialDims.push_back(dim);
|
|
InnerScalarCount *= dim;
|
|
}
|
|
assert(EigenIO::Traits<Scalar>::count == InnerScalarCount);
|
|
assert(EigenIO::Traits<Scalar>::size == sizeof( Scalar ));
|
|
const unsigned int NonTrivialDimsSize = static_cast<unsigned int>(NonTrivialDims.size());
|
|
assert( NonTrivialDimsSize == NonTrivialDims.size() );
|
|
//const typename ETensor::Index TotalNumElements = NumScalars * InnerScalarCount;
|
|
using Index = typename ETensor::Index;
|
|
std::array<Index, ETensor::NumIndices> MyIndex;
|
|
for( auto &idx : MyIndex ) idx = 0;
|
|
std::vector<std::size_t> SubIndex(NonTrivialDimsSize);
|
|
for( auto &idx : SubIndex ) idx = 0;
|
|
Index n = 0;
|
|
for( std::size_t j = 0; j < NumScalars; j++ ) {
|
|
// if constexpr is C++ 17 ... but otherwise need two specialisations (Container vs Scalar)
|
|
if constexpr ( EigenIO::Traits<Scalar>::rank_non_trivial == 0 ) {
|
|
lambda(ET( MyIndex ), n++, &SubIndex[0] );
|
|
// Now increment SubIndex
|
|
for( auto i = NonTrivialDimsSize - 1; i != -1 && ++SubIndex[i] == NonTrivialDims[i]; i-- )
|
|
SubIndex[i] = 0;
|
|
}
|
|
else
|
|
{
|
|
for( typename Scalar::scalar_type &Source : ET( MyIndex ) ) {
|
|
lambda(Source, n++, &SubIndex[0] );
|
|
// Now increment SubIndex
|
|
for( auto i = NonTrivialDimsSize - 1; i != -1 && ++SubIndex[i] == NonTrivialDims[i]; i-- )
|
|
SubIndex[i] = 0;
|
|
}
|
|
}
|
|
// Now increment MyIndex
|
|
for( auto i = ET.NumDimensions - 1; i != -1 && ++MyIndex[i] == ET.dimension(i); i-- )
|
|
MyIndex[i] = 0;
|
|
}
|
|
}
|
|
|
|
// Abstract writer/reader classes ////////////////////////////////////////////
|
|
// static polymorphism implemented using CRTP idiom
|
|
class Serializable;
|
|
|
|
// Static abstract writer
|
|
template <typename T>
|
|
class Writer
|
|
{
|
|
public:
|
|
Writer(void);
|
|
virtual ~Writer(void) = default;
|
|
void push(const std::string &s);
|
|
void pop(void);
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
|
write(const std::string& s, const U &output);
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value
|
|
&& !std::is_base_of<Eigen::TensorBase<U, Eigen::ReadOnlyAccessors>, U>::value, void>::type
|
|
write(const std::string& s, const U &output);
|
|
template <typename U>
|
|
void write(const std::string &s, const iScalar<U> &output);
|
|
template <typename U, int N>
|
|
void write(const std::string &s, const iVector<U, N> &output);
|
|
template <typename U, int N>
|
|
void write(const std::string &s, const iMatrix<U, N> &output);
|
|
template <typename ETensor>
|
|
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && EigenIO::is_scalar<typename ETensor::Scalar>::value, void>::type
|
|
write(const std::string &s, const ETensor &output);
|
|
template <typename ETensor>
|
|
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && EigenIO::is_container<typename ETensor::Scalar>::value, void>::type
|
|
write(const std::string &s, const ETensor &output);
|
|
|
|
void scientificFormat(const bool set);
|
|
bool isScientific(void);
|
|
void setPrecision(const unsigned int prec);
|
|
unsigned int getPrecision(void);
|
|
private:
|
|
T *upcast;
|
|
bool scientific_{false};
|
|
unsigned int prec_{0};
|
|
};
|
|
|
|
// Static abstract reader
|
|
template <typename T>
|
|
class Reader
|
|
{
|
|
public:
|
|
Reader(void);
|
|
virtual ~Reader(void) = default;
|
|
bool push(const std::string &s);
|
|
void pop(void);
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
|
read(const std::string& s, U &output);
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
|
|
read(const std::string& s, U &output);
|
|
template <typename U>
|
|
void read(const std::string &s, iScalar<U> &output);
|
|
template <typename U, int N>
|
|
void read(const std::string &s, iVector<U, N> &output);
|
|
template <typename U, int N>
|
|
void read(const std::string &s, iMatrix<U, N> &output);
|
|
protected:
|
|
template <typename U>
|
|
void fromString(U &output, const std::string &s);
|
|
private:
|
|
T *upcast;
|
|
};
|
|
|
|
// What is the vtype
|
|
template<typename T> struct isReader {
|
|
static const bool value = false;
|
|
};
|
|
template<typename T> struct isWriter {
|
|
static const bool value = false;
|
|
};
|
|
|
|
// Writer template implementation
|
|
template <typename T>
|
|
Writer<T>::Writer(void)
|
|
{
|
|
upcast = static_cast<T *>(this);
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::push(const std::string &s)
|
|
{
|
|
upcast->push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::pop(void)
|
|
{
|
|
upcast->pop();
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
|
Writer<T>::write(const std::string &s, const U &output)
|
|
{
|
|
U::write(*this, s, output);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value
|
|
&& !std::is_base_of<Eigen::TensorBase<U, Eigen::ReadOnlyAccessors>, U>::value, void>::type
|
|
Writer<T>::write(const std::string &s, const U &output)
|
|
{
|
|
upcast->writeDefault(s, output);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
void Writer<T>::write(const std::string &s, const iScalar<U> &output)
|
|
{
|
|
upcast->writeDefault(s, tensorToVec(output));
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Writer<T>::write(const std::string &s, const iVector<U, N> &output)
|
|
{
|
|
upcast->writeDefault(s, tensorToVec(output));
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Writer<T>::write(const std::string &s, const iMatrix<U, N> &output)
|
|
{
|
|
upcast->writeDefault(s, tensorToVec(output));
|
|
}
|
|
|
|
// Eigen::Tensors of arithmetic/complex base type
|
|
template <typename T>
|
|
template <typename ETensor>
|
|
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && EigenIO::is_scalar<typename ETensor::Scalar>::value, void>::type
|
|
Writer<T>::write(const std::string &s, const ETensor &output)
|
|
{
|
|
const typename ETensor::Index NumElements{output.size()};
|
|
assert( NumElements > 0 );
|
|
if( NumElements == 1 )
|
|
upcast->writeDefault(s, * output.data());
|
|
else {
|
|
// We're only interested in non-trivial dimensions (i.e. dimensions > 1)
|
|
unsigned int TrivialDimCount{0};
|
|
std::vector<size_t> NonTrivialDims;
|
|
NonTrivialDims.reserve(output.NumDimensions); // Make sure we only do one malloc
|
|
for(auto i = 0; i < output.NumDimensions; i++ ) {
|
|
auto dim = output.dimension(i);
|
|
if( dim <= 1 ) {
|
|
TrivialDimCount++;
|
|
assert( dim == 1 ); // Not expecting dimension to be <= 0
|
|
} else {
|
|
size_t s = static_cast<size_t>(dim);
|
|
assert( s == dim ); // check we didn't lose anything in the conversion
|
|
NonTrivialDims.push_back(s);
|
|
}
|
|
}
|
|
// NB: NumElements > 1 implies this is not a scalar, so some dims should be left
|
|
assert( output.NumDimensions > TrivialDimCount );
|
|
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
|
|
const bool CopyData{ETensor::Layout != Eigen::StorageOptions::RowMajor};
|
|
using Scalar = typename ETensor::Scalar;
|
|
const Scalar * pWriteBuffer;
|
|
Scalar * pCopyBuffer = nullptr;
|
|
if( !CopyData )
|
|
pWriteBuffer = output.data();
|
|
else {
|
|
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
|
|
pCopyBuffer = static_cast<Scalar *>(malloc(sizeof(Scalar) * NumElements));
|
|
pWriteBuffer = pCopyBuffer;
|
|
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
|
|
for( auto &idx : MyIndex ) idx = 0;
|
|
for( typename ETensor::Index n = 0; n < NumElements; n++ ) {
|
|
pCopyBuffer[n] = output( MyIndex );
|
|
// Now increment the index
|
|
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
|
|
MyIndex[i] = 0;
|
|
}
|
|
}
|
|
upcast->template writeMultiDim<typename ETensor::Scalar>(s, NonTrivialDims, pWriteBuffer, NumElements);
|
|
if( pCopyBuffer ) free( pCopyBuffer );
|
|
}
|
|
}
|
|
|
|
// Eigen::Tensors of Grid tensors (iScalar, iVector, iMatrix)
|
|
template <typename T>
|
|
template <typename ETensor/*, typename U, int N*/>
|
|
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && EigenIO::is_container<typename ETensor::Scalar>::value, void>::type
|
|
Writer<T>::write(const std::string &s, const ETensor &output)
|
|
{
|
|
const typename ETensor::Index NumElements{output.size()};
|
|
assert( NumElements > 0 );
|
|
if( NumElements == 1 )
|
|
upcast->writeDefault(s, tensorToVec(* output.data()));
|
|
else {
|
|
// We're only interested in non-trivial dimensions (i.e. dimensions > 1)
|
|
unsigned int TrivialDimCount{0};
|
|
std::vector<size_t> NonTrivialDims;
|
|
NonTrivialDims.reserve(output.NumDimensions + EigenIO::Traits<typename ETensor::Scalar>::rank_non_trivial); // Make sure we only do one malloc
|
|
for(auto i = 0; i < output.NumDimensions; i++ ) {
|
|
auto dim = output.dimension(i);
|
|
if( dim <= 1 ) {
|
|
TrivialDimCount++;
|
|
assert( dim == 1 ); // Not expecting dimension to be <= 0
|
|
} else {
|
|
size_t s = static_cast<size_t>(dim);
|
|
assert( s == dim ); // check we didn't lose anything in the conversion
|
|
NonTrivialDims.push_back(s);
|
|
}
|
|
}
|
|
// NB: NumElements > 1 implies this is not a scalar, so some dims should be left
|
|
assert( output.NumDimensions > TrivialDimCount );
|
|
// Now add the extra dimensions, based on object zero
|
|
typename TensorToVec<typename ETensor::Scalar>::type ttv = tensorToVec(* output.data());
|
|
Flatten<typename TensorToVec<typename ETensor::Scalar>::type> f(ttv);
|
|
const std::vector<size_t> & ExtraDims{f.getDim()};
|
|
assert(ExtraDims.size() == EigenIO::Traits<typename ETensor::Scalar>::rank_non_trivial);
|
|
size_t ExtraCount{1};
|
|
for( auto i : ExtraDims ) {
|
|
assert( i > 0 );
|
|
ExtraCount *= i;
|
|
NonTrivialDims.push_back(i);
|
|
}
|
|
assert(EigenIO::Traits<typename ETensor::Scalar>::count == ExtraCount);
|
|
assert(EigenIO::Traits<typename ETensor::Scalar>::size == sizeof( typename ETensor::Scalar ));
|
|
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
|
|
const bool CopyData{ETensor::Layout != Eigen::StorageOptions::RowMajor};
|
|
using Scalar = typename ETensor::Scalar::scalar_type;
|
|
const Scalar * pWriteBuffer;
|
|
Scalar * pCopyBuffer = nullptr;
|
|
const typename ETensor::Index TotalNumElements = NumElements * ExtraCount;
|
|
if( !CopyData )
|
|
pWriteBuffer = output.data()->begin();
|
|
else {
|
|
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
|
|
pCopyBuffer = static_cast<Scalar *>(malloc(TotalNumElements * sizeof(Scalar)));
|
|
pWriteBuffer = pCopyBuffer;
|
|
Scalar * pCopy = pCopyBuffer;
|
|
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
|
|
for( auto &idx : MyIndex ) idx = 0;
|
|
for( typename ETensor::Index n = 0; n < NumElements; n++ ) {
|
|
// Copy the grid tensor
|
|
for( const Scalar &Source : output( MyIndex ) )
|
|
* pCopy ++ = Source;
|
|
// Now increment the index
|
|
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
|
|
MyIndex[i] = 0;
|
|
}
|
|
}
|
|
upcast->template writeMultiDim<Scalar>(s, NonTrivialDims, pWriteBuffer, TotalNumElements);
|
|
if( pCopyBuffer ) free( pCopyBuffer );
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::scientificFormat(const bool set)
|
|
{
|
|
scientific_ = set;
|
|
}
|
|
|
|
template <typename T>
|
|
bool Writer<T>::isScientific(void)
|
|
{
|
|
return scientific_;
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::setPrecision(const unsigned int prec)
|
|
{
|
|
prec_ = prec;
|
|
}
|
|
|
|
template <typename T>
|
|
unsigned int Writer<T>::getPrecision(void)
|
|
{
|
|
return prec_;
|
|
}
|
|
|
|
// Reader template implementation
|
|
template <typename T>
|
|
Reader<T>::Reader(void)
|
|
{
|
|
upcast = static_cast<T *>(this);
|
|
}
|
|
|
|
template <typename T>
|
|
bool Reader<T>::push(const std::string &s)
|
|
{
|
|
return upcast->push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
void Reader<T>::pop(void)
|
|
{
|
|
upcast->pop();
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
|
Reader<T>::read(const std::string &s, U &output)
|
|
{
|
|
U::read(*this, s, output);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
|
|
Reader<T>::read(const std::string &s, U &output)
|
|
{
|
|
upcast->readDefault(s, output);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
void Reader<T>::read(const std::string &s, iScalar<U> &output)
|
|
{
|
|
typename TensorToVec<iScalar<U>>::type v;
|
|
|
|
upcast->readDefault(s, v);
|
|
vecToTensor(output, v);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Reader<T>::read(const std::string &s, iVector<U, N> &output)
|
|
{
|
|
typename TensorToVec<iVector<U, N>>::type v;
|
|
|
|
upcast->readDefault(s, v);
|
|
vecToTensor(output, v);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Reader<T>::read(const std::string &s, iMatrix<U, N> &output)
|
|
{
|
|
typename TensorToVec<iMatrix<U, N>>::type v;
|
|
|
|
upcast->readDefault(s, v);
|
|
vecToTensor(output, v);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
void Reader<T>::fromString(U &output, const std::string &s)
|
|
{
|
|
std::istringstream is(s);
|
|
|
|
is.exceptions(std::ios::failbit);
|
|
try
|
|
{
|
|
is >> std::boolalpha >> output;
|
|
}
|
|
catch(std::ios_base::failure &e)
|
|
{
|
|
std::cerr << "numerical conversion failure on '" << s << "' ";
|
|
std::cerr << "(typeid: " << typeid(U).name() << ")" << std::endl;
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// serializable base class ///////////////////////////////////////////////////
|
|
class Serializable
|
|
{
|
|
public:
|
|
template <typename T>
|
|
static inline void write(Writer<T> &WR,const std::string &s,
|
|
const Serializable &obj)
|
|
{}
|
|
|
|
template <typename T>
|
|
static inline void read(Reader<T> &RD,const std::string &s,
|
|
Serializable &obj)
|
|
{}
|
|
|
|
friend inline std::ostream & operator<<(std::ostream &os,
|
|
const Serializable &obj)
|
|
{
|
|
return os;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<!std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, bool>::type
|
|
CompareMember(const T &lhs, const T &rhs) {
|
|
return lhs == rhs;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, bool>::type
|
|
CompareMember(const T &lhs, const T &rhs) {
|
|
Eigen::Tensor<bool, 0, T::Options> bResult = (lhs == rhs).all();
|
|
return bResult(0);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, bool>::type
|
|
CompareMember(const std::vector<T> &lhs, const std::vector<T> &rhs) {
|
|
const auto NumElements{lhs.size()};
|
|
bool bResult = ( NumElements == rhs.size() );
|
|
for( auto i = 0 ; i < NumElements && bResult ; i++ ) {
|
|
Eigen::Tensor<bool, 0, T::Options> b = (lhs[i] == rhs[i]).all();
|
|
bResult = b(0);
|
|
}
|
|
return bResult;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<!std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, void>::type
|
|
WriteMember(std::ostream &os, const T &object) {
|
|
os << object;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, void>::type
|
|
WriteMember(std::ostream &os, const T &object) {
|
|
os << "Eigen::Tensor";
|
|
}
|
|
};
|
|
|
|
// Generic writer interface //////////////////////////////////////////////////
|
|
template <typename T>
|
|
inline void push(Writer<T> &w, const std::string &s) {
|
|
w.push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
inline void push(Writer<T> &w, const char *s)
|
|
{
|
|
w.push(std::string(s));
|
|
}
|
|
|
|
template <typename T>
|
|
inline void pop(Writer<T> &w)
|
|
{
|
|
w.pop();
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
inline void write(Writer<T> &w, const std::string& s, const U &output)
|
|
{
|
|
w.write(s, output);
|
|
}
|
|
|
|
// Generic reader interface //////////////////////////////////////////////////
|
|
template <typename T>
|
|
inline bool push(Reader<T> &r, const std::string &s)
|
|
{
|
|
return r.push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
inline bool push(Reader<T> &r, const char *s)
|
|
{
|
|
return r.push(std::string(s));
|
|
}
|
|
|
|
template <typename T>
|
|
inline void pop(Reader<T> &r)
|
|
{
|
|
r.pop();
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
inline void read(Reader<T> &r, const std::string &s, U &output)
|
|
{
|
|
r.read(s, output);
|
|
}
|
|
}
|
|
|
|
#endif
|