mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-09 13:40:46 +01:00
1) The Eigen package defines operator<< for Eigen tensors, but this format is different, hence Grid::Serializable::WriteMember 2) For simplification, the contents are written in memory order. I.e. Different results will be obtained depending on whether the tensor is row- or column-major
661 lines
23 KiB
C++
661 lines
23 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/serialisation/BaseIO.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Antonin Portelli <antonin.portelli@me.com>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_SERIALISATION_ABSTRACT_READER_H
|
|
#define GRID_SERIALISATION_ABSTRACT_READER_H
|
|
|
|
#include <type_traits>
|
|
#include <Grid/tensors/Tensors.h>
|
|
#include <Grid/serialisation/VectorUtils.h>
|
|
#include <Grid/Eigen/unsupported/CXX11/Tensor>
|
|
|
|
namespace Grid {
|
|
namespace EigenIO {
|
|
// EigenIO works for scalars that are not just Grid supported scalars
|
|
template<typename T, typename V = void> struct is_complex : public std::false_type {};
|
|
// Support all complex types (not just Grid complex types) - even if the definitions overlap (!)
|
|
template<typename T> struct is_complex< T , typename
|
|
std::enable_if< ::Grid::is_complex< T >::value>::type> : public std::true_type {};
|
|
template<typename T> struct is_complex<std::complex<T>, typename
|
|
std::enable_if<!::Grid::is_complex<std::complex<T>>::value>::type> : public std::true_type {};
|
|
|
|
// Helpers to support I/O for Eigen tensors of arithmetic scalars, complex types, or Grid tensors
|
|
template<typename T, typename V = void> struct is_scalar : public std::false_type {};
|
|
template<typename T> struct is_scalar<T, typename std::enable_if<std::is_arithmetic<T>::value || is_complex<T>::value>::type> : public std::true_type {};
|
|
|
|
// Is this an Eigen tensor
|
|
template<typename T> struct is_tensor : std::integral_constant<bool,
|
|
std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value> {};
|
|
|
|
// Is this an Eigen tensor of a supported scalar
|
|
template<typename T, typename V = void> struct is_tensor_of_scalar : public std::false_type {};
|
|
template<typename T> struct is_tensor_of_scalar<T, typename std::enable_if<is_tensor<T>::value && is_scalar<typename T::Scalar>::value>::type> : public std::true_type {};
|
|
|
|
// Is this an Eigen tensor of a supported container
|
|
template<typename T, typename V = void> struct is_tensor_of_container : public std::false_type {};
|
|
template<typename T> struct is_tensor_of_container<T, typename std::enable_if<is_tensor<T>::value && isGridTensor<typename T::Scalar>::value>::type> : public std::true_type {};
|
|
|
|
// These traits describe the scalars inside Eigen tensors
|
|
// I wish I could define these in reference to the scalar type (so there would be fewer traits defined)
|
|
// but I'm unable to find a syntax to make this work
|
|
template<typename T, typename V = void> struct Traits {};
|
|
// Traits are the default for scalars, or come from GridTypeMapper for GridTensors
|
|
template<typename T> struct Traits<T, typename std::enable_if<is_tensor_of_scalar<T>::value>::type>
|
|
: public GridTypeMapper_Base {
|
|
using scalar_type = typename T::Scalar; // ultimate base scalar
|
|
static constexpr bool is_complex = ::Grid::EigenIO::is_complex<scalar_type>::value;
|
|
};
|
|
// Traits are the default for scalars, or come from GridTypeMapper for GridTensors
|
|
template<typename T> struct Traits<T, typename std::enable_if<is_tensor_of_container<T>::value>::type> {
|
|
using BaseTraits = GridTypeMapper<typename T::Scalar>;
|
|
using scalar_type = typename BaseTraits::scalar_type; // ultimate base scalar
|
|
static constexpr bool is_complex = ::Grid::EigenIO::is_complex<scalar_type>::value;
|
|
static constexpr int TensorLevel = BaseTraits::TensorLevel;
|
|
static constexpr int Rank = BaseTraits::Rank;
|
|
static constexpr std::size_t count = BaseTraits::count;
|
|
static constexpr int Dimension(int dim) { return BaseTraits::Dimension(dim); }
|
|
};
|
|
|
|
// Is this a fixed-size Eigen tensor
|
|
template<typename T> struct is_tensor_fixed : public std::false_type {};
|
|
template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType>
|
|
struct is_tensor_fixed<Eigen::TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType>>
|
|
: public std::true_type {};
|
|
template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType,
|
|
int MapOptions_, template <class> class MapPointer_>
|
|
struct is_tensor_fixed<Eigen::TensorMap<Eigen::TensorFixedSize<Scalar_, Dimensions_,
|
|
Options_, IndexType>, MapOptions_, MapPointer_>>
|
|
: public std::true_type {};
|
|
|
|
// Is this a variable-size Eigen tensor
|
|
template<typename T, typename V = void> struct is_tensor_variable : public std::false_type {};
|
|
template<typename T> struct is_tensor_variable<T, typename std::enable_if<is_tensor<T>::value
|
|
&& !is_tensor_fixed<T>::value>::type> : public std::true_type {};
|
|
}
|
|
|
|
// Abstract writer/reader classes ////////////////////////////////////////////
|
|
// static polymorphism implemented using CRTP idiom
|
|
class Serializable;
|
|
|
|
// Static abstract writer
|
|
template <typename T>
|
|
class Writer
|
|
{
|
|
public:
|
|
Writer(void);
|
|
virtual ~Writer(void) = default;
|
|
void push(const std::string &s);
|
|
void pop(void);
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value>::type
|
|
write(const std::string& s, const U &output);
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value && !EigenIO::is_tensor<U>::value>::type
|
|
write(const std::string& s, const U &output);
|
|
template <typename U>
|
|
void write(const std::string &s, const iScalar<U> &output);
|
|
template <typename U, int N>
|
|
void write(const std::string &s, const iVector<U, N> &output);
|
|
template <typename U, int N>
|
|
void write(const std::string &s, const iMatrix<U, N> &output);
|
|
template <typename ETensor>
|
|
typename std::enable_if<EigenIO::is_tensor<ETensor>::value>::type
|
|
write(const std::string &s, const ETensor &output);
|
|
|
|
// Helper functions for Scalar vs Container specialisations
|
|
template <typename ETensor>
|
|
inline typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value,
|
|
const typename ETensor::Scalar *>::type
|
|
getFirstScalar(const ETensor &output)
|
|
{
|
|
return output.data();
|
|
}
|
|
|
|
template <typename ETensor>
|
|
inline typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value,
|
|
const typename EigenIO::Traits<ETensor>::scalar_type *>::type
|
|
getFirstScalar(const ETensor &output)
|
|
{
|
|
return output.data()->begin();
|
|
}
|
|
|
|
template <typename S>
|
|
inline typename std::enable_if<EigenIO::is_scalar<S>::value, void>::type
|
|
copyScalars(S * &pCopy, const S &Source)
|
|
{
|
|
* pCopy ++ = Source;
|
|
}
|
|
|
|
template <typename S>
|
|
inline typename std::enable_if<isGridTensor<S>::value, void>::type
|
|
copyScalars(typename GridTypeMapper<S>::scalar_type * &pCopy, const S &Source)
|
|
{
|
|
for( const typename GridTypeMapper<S>::scalar_type &item : Source )
|
|
* pCopy ++ = item;
|
|
}
|
|
|
|
void scientificFormat(const bool set);
|
|
bool isScientific(void);
|
|
void setPrecision(const unsigned int prec);
|
|
unsigned int getPrecision(void);
|
|
private:
|
|
T *upcast;
|
|
bool scientific_{false};
|
|
unsigned int prec_{0};
|
|
};
|
|
|
|
// Static abstract reader
|
|
template <typename T>
|
|
class Reader
|
|
{
|
|
public:
|
|
Reader(void);
|
|
virtual ~Reader(void) = default;
|
|
bool push(const std::string &s);
|
|
void pop(void);
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
|
read(const std::string& s, U &output);
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value
|
|
&& !EigenIO::is_tensor<U>::value, void>::type
|
|
read(const std::string& s, U &output);
|
|
template <typename U>
|
|
void read(const std::string &s, iScalar<U> &output);
|
|
template <typename U, int N>
|
|
void read(const std::string &s, iVector<U, N> &output);
|
|
template <typename U, int N>
|
|
void read(const std::string &s, iMatrix<U, N> &output);
|
|
template <typename ETensor>
|
|
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
|
|
read(const std::string &s, ETensor &output);
|
|
template <typename ETensor>
|
|
typename std::enable_if<EigenIO::is_tensor_fixed<ETensor>::value, void>::type
|
|
Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims );
|
|
template <typename ETensor>
|
|
typename std::enable_if<EigenIO::is_tensor_variable<ETensor>::value, void>::type
|
|
Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims );
|
|
|
|
// Helper functions for Scalar vs Container specialisations
|
|
template <typename S>
|
|
inline typename std::enable_if<EigenIO::is_scalar<S>::value, void>::type
|
|
copyScalars(S &Dest, const S * &pSource)
|
|
{
|
|
Dest = * pSource ++;
|
|
}
|
|
|
|
template <typename S>
|
|
inline typename std::enable_if<isGridTensor<S>::value, void>::type
|
|
copyScalars(S &Dest, const typename GridTypeMapper<S>::scalar_type * &pSource)
|
|
{
|
|
for( typename GridTypeMapper<S>::scalar_type &item : Dest )
|
|
item = * pSource ++;
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fromString(U &output, const std::string &s);
|
|
private:
|
|
T *upcast;
|
|
};
|
|
|
|
// What is the vtype
|
|
template<typename T> struct isReader {
|
|
static const bool value = false;
|
|
};
|
|
template<typename T> struct isWriter {
|
|
static const bool value = false;
|
|
};
|
|
|
|
// Writer template implementation
|
|
template <typename T>
|
|
Writer<T>::Writer(void)
|
|
{
|
|
upcast = static_cast<T *>(this);
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::push(const std::string &s)
|
|
{
|
|
upcast->push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::pop(void)
|
|
{
|
|
upcast->pop();
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
|
Writer<T>::write(const std::string &s, const U &output)
|
|
{
|
|
U::write(*this, s, output);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value
|
|
&& !EigenIO::is_tensor<U>::value, void>::type
|
|
Writer<T>::write(const std::string &s, const U &output)
|
|
{
|
|
upcast->writeDefault(s, output);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
void Writer<T>::write(const std::string &s, const iScalar<U> &output)
|
|
{
|
|
upcast->writeDefault(s, tensorToVec(output));
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Writer<T>::write(const std::string &s, const iVector<U, N> &output)
|
|
{
|
|
upcast->writeDefault(s, tensorToVec(output));
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Writer<T>::write(const std::string &s, const iMatrix<U, N> &output)
|
|
{
|
|
upcast->writeDefault(s, tensorToVec(output));
|
|
}
|
|
|
|
// Eigen::Tensors of Grid tensors (iScalar, iVector, iMatrix)
|
|
template <typename T>
|
|
template <typename ETensor>
|
|
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
|
|
Writer<T>::write(const std::string &s, const ETensor &output)
|
|
{
|
|
using Index = typename ETensor::Index;
|
|
using Container = typename ETensor::Scalar; // NB: could be same as scalar
|
|
using Traits = EigenIO::Traits<ETensor>;
|
|
using Scalar = typename Traits::scalar_type; // type of the underlying scalar
|
|
constexpr unsigned int TensorRank{ETensor::NumIndices};
|
|
constexpr unsigned int ContainerRank{Traits::Rank}; // Only non-zero for containers
|
|
constexpr unsigned int TotalRank{TensorRank + ContainerRank};
|
|
const Index NumElements{output.size()};
|
|
assert( NumElements > 0 );
|
|
|
|
// Get the dimensionality of the tensor
|
|
std::vector<std::size_t> TotalDims(TotalRank);
|
|
for(auto i = 0; i < TensorRank; i++ ) {
|
|
auto dim = output.dimension(i);
|
|
TotalDims[i] = static_cast<size_t>(dim);
|
|
assert( TotalDims[i] == dim ); // check we didn't lose anything in the conversion
|
|
}
|
|
for(auto i = 0; i < ContainerRank; i++ )
|
|
TotalDims[TensorRank + i] = Traits::Dimension(i);
|
|
|
|
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
|
|
const bool CopyData{NumElements > 1 && ETensor::Layout != Eigen::StorageOptions::RowMajor};
|
|
const Scalar * pWriteBuffer;
|
|
std::vector<Scalar> CopyBuffer;
|
|
const Index TotalNumElements = NumElements * Traits::count;
|
|
if( !CopyData ) {
|
|
pWriteBuffer = getFirstScalar( output );
|
|
} else {
|
|
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
|
|
CopyBuffer.resize( TotalNumElements );
|
|
Scalar * pCopy = &CopyBuffer[0];
|
|
pWriteBuffer = pCopy;
|
|
std::array<Index, TensorRank> MyIndex;
|
|
for( auto &idx : MyIndex ) idx = 0;
|
|
for( auto n = 0; n < NumElements; n++ ) {
|
|
const Container & c = output( MyIndex );
|
|
copyScalars( pCopy, c );
|
|
// Now increment the index
|
|
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
|
|
MyIndex[i] = 0;
|
|
}
|
|
}
|
|
upcast->template writeMultiDim<Scalar>(s, TotalDims, pWriteBuffer, TotalNumElements);
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::scientificFormat(const bool set)
|
|
{
|
|
scientific_ = set;
|
|
}
|
|
|
|
template <typename T>
|
|
bool Writer<T>::isScientific(void)
|
|
{
|
|
return scientific_;
|
|
}
|
|
|
|
template <typename T>
|
|
void Writer<T>::setPrecision(const unsigned int prec)
|
|
{
|
|
prec_ = prec;
|
|
}
|
|
|
|
template <typename T>
|
|
unsigned int Writer<T>::getPrecision(void)
|
|
{
|
|
return prec_;
|
|
}
|
|
|
|
// Reader template implementation
|
|
template <typename T>
|
|
Reader<T>::Reader(void)
|
|
{
|
|
upcast = static_cast<T *>(this);
|
|
}
|
|
|
|
template <typename T>
|
|
bool Reader<T>::push(const std::string &s)
|
|
{
|
|
return upcast->push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
void Reader<T>::pop(void)
|
|
{
|
|
upcast->pop();
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
|
|
Reader<T>::read(const std::string &s, U &output)
|
|
{
|
|
U::read(*this, s, output);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
typename std::enable_if<!std::is_base_of<Serializable, U>::value
|
|
&& !EigenIO::is_tensor<U>::value, void>::type
|
|
Reader<T>::read(const std::string &s, U &output)
|
|
{
|
|
upcast->readDefault(s, output);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
void Reader<T>::read(const std::string &s, iScalar<U> &output)
|
|
{
|
|
typename TensorToVec<iScalar<U>>::type v;
|
|
|
|
upcast->readDefault(s, v);
|
|
vecToTensor(output, v);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Reader<T>::read(const std::string &s, iVector<U, N> &output)
|
|
{
|
|
typename TensorToVec<iVector<U, N>>::type v;
|
|
|
|
upcast->readDefault(s, v);
|
|
vecToTensor(output, v);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U, int N>
|
|
void Reader<T>::read(const std::string &s, iMatrix<U, N> &output)
|
|
{
|
|
typename TensorToVec<iMatrix<U, N>>::type v;
|
|
|
|
upcast->readDefault(s, v);
|
|
vecToTensor(output, v);
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename ETensor>
|
|
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
|
|
Reader<T>::read(const std::string &s, ETensor &output)
|
|
{
|
|
using Index = typename ETensor::Index;
|
|
using Container = typename ETensor::Scalar; // NB: could be same as scalar
|
|
using Traits = EigenIO::Traits<ETensor>;
|
|
using Scalar = typename Traits::scalar_type; // type of the underlying scalar
|
|
constexpr unsigned int TensorRank{ETensor::NumIndices};
|
|
constexpr unsigned int ContainerRank{Traits::Rank}; // Only non-zero for containers
|
|
constexpr unsigned int TotalRank{TensorRank + ContainerRank};
|
|
using ETDims = std::array<Index, TensorRank>; // Dimensions of the tensor
|
|
|
|
// read the (flat) data and dimensionality
|
|
std::vector<std::size_t> dimData;
|
|
std::vector<Scalar> buf;
|
|
upcast->readMultiDim( s, buf, dimData );
|
|
assert(dimData.size() == TotalRank && "EigenIO: Tensor rank mismatch" );
|
|
// Make sure that the number of elements read matches dimensions read
|
|
std::size_t NumContainers = 1;
|
|
for( auto i = 0 ; i < TensorRank ; i++ )
|
|
NumContainers *= dimData[i];
|
|
// If our scalar object is a Container, make sure it's dimensions match what we read back
|
|
std::size_t ElementsPerContainer = 1;
|
|
for( auto i = 0 ; i < ContainerRank ; i++ ) {
|
|
assert( dimData[TensorRank+i] == Traits::Dimension(i) && "Tensor Container dimensions don't match data" );
|
|
ElementsPerContainer *= dimData[TensorRank+i];
|
|
}
|
|
assert( NumContainers * ElementsPerContainer == buf.size() && "EigenIO: Number of elements != product of dimensions" );
|
|
// Now see whether the tensor is the right shape, or can be made to be
|
|
const auto & dims = output.dimensions();
|
|
bool bShapeOK = (output.data() != nullptr);
|
|
for( auto i = 0; bShapeOK && i < TensorRank ; i++ )
|
|
if( dims[i] != dimData[i] )
|
|
bShapeOK = false;
|
|
// Make the tensor the same size as the data read
|
|
ETDims MyIndex;
|
|
if( !bShapeOK ) {
|
|
for( auto i = 0 ; i < TensorRank ; i++ )
|
|
MyIndex[i] = dimData[i];
|
|
Reshape(output, MyIndex);
|
|
}
|
|
// Copy the data into the tensor
|
|
for( auto &d : MyIndex ) d = 0;
|
|
const Scalar * pSource = &buf[0];
|
|
for( std::size_t n = 0 ; n < NumContainers ; n++ ) {
|
|
Container & c = output( MyIndex );
|
|
copyScalars( c, pSource );
|
|
// Now increment the index
|
|
for( int i = TensorRank - 1; i != -1 && ++MyIndex[i] == dims[i]; i-- )
|
|
MyIndex[i] = 0;
|
|
}
|
|
assert( pSource == &buf[NumContainers * ElementsPerContainer] );
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename ETensor>
|
|
typename std::enable_if<EigenIO::is_tensor_fixed<ETensor>::value, void>::type
|
|
Reader<T>::Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims )
|
|
{
|
|
assert( 0 && "EigenIO: Fixed tensor dimensions can't be changed" );
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename ETensor>
|
|
typename std::enable_if<EigenIO::is_tensor_variable<ETensor>::value, void>::type
|
|
Reader<T>::Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims )
|
|
{
|
|
//t.reshape( dims );
|
|
t.resize( dims );
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename U>
|
|
void Reader<T>::fromString(U &output, const std::string &s)
|
|
{
|
|
std::istringstream is(s);
|
|
|
|
is.exceptions(std::ios::failbit);
|
|
try
|
|
{
|
|
is >> std::boolalpha >> output;
|
|
}
|
|
catch(std::ios_base::failure &e)
|
|
{
|
|
std::cerr << "numerical conversion failure on '" << s << "' ";
|
|
std::cerr << "(typeid: " << typeid(U).name() << ")" << std::endl;
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// serializable base class ///////////////////////////////////////////////////
|
|
class Serializable
|
|
{
|
|
public:
|
|
template <typename T>
|
|
static inline void write(Writer<T> &WR,const std::string &s,
|
|
const Serializable &obj)
|
|
{}
|
|
|
|
template <typename T>
|
|
static inline void read(Reader<T> &RD,const std::string &s,
|
|
Serializable &obj)
|
|
{}
|
|
|
|
friend inline std::ostream & operator<<(std::ostream &os,
|
|
const Serializable &obj)
|
|
{
|
|
return os;
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
static inline typename std::enable_if<!EigenIO::is_tensor<T1>::value || !EigenIO::is_tensor<T2>::value, bool>::type
|
|
CompareMember(const T1 &lhs, const T2 &rhs) {
|
|
return lhs == rhs;
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
static inline typename std::enable_if<EigenIO::is_tensor<T1>::value && EigenIO::is_tensor<T2>::value, bool>::type
|
|
CompareMember(const T1 &lhs, const T2 &rhs) {
|
|
// First check whether dimensions match (Eigen tensor library will assert if they don't match)
|
|
bool bReturnValue = (T1::NumIndices == T2::NumIndices);
|
|
for( auto i = 0 ; bReturnValue && i < T1::NumIndices ; i++ )
|
|
bReturnValue = ( lhs.dimension(i) == rhs.dimension(i) );
|
|
if( bReturnValue ) {
|
|
Eigen::Tensor<bool, 0, T1::Options> bResult = (lhs == rhs).all();
|
|
bReturnValue = bResult(0);
|
|
}
|
|
return bReturnValue;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<EigenIO::is_tensor<T>::value, bool>::type
|
|
CompareMember(const std::vector<T> &lhs, const std::vector<T> &rhs) {
|
|
const auto NumElements = lhs.size();
|
|
bool bResult = ( NumElements == rhs.size() );
|
|
for( auto i = 0 ; i < NumElements && bResult ; i++ )
|
|
bResult = CompareMember(lhs[i], rhs[i]);
|
|
return bResult;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<!EigenIO::is_tensor<T>::value, void>::type
|
|
WriteMember(std::ostream &os, const T &object) {
|
|
os << object;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
|
|
WriteMember(std::ostream &os, const T &object) {
|
|
using Index = typename T::Index;
|
|
const Index NumElements{object.size()};
|
|
assert( NumElements > 0 );
|
|
Index count = 1;
|
|
os << "T<";
|
|
for( int i = 0; i < T::NumIndices; i++ ) {
|
|
Index dim = object.dimension(i);
|
|
count *= dim;
|
|
if( i )
|
|
os << ",";
|
|
os << dim;
|
|
}
|
|
assert( count == NumElements && "Number of elements doesn't match tensor dimensions" );
|
|
os << ">{";
|
|
const typename T::Scalar * p = object.data();
|
|
for( Index i = 0; i < count; i++ ) {
|
|
if( i )
|
|
os << ",";
|
|
os << *p++;
|
|
}
|
|
os << "}";
|
|
}
|
|
};
|
|
|
|
// Generic writer interface //////////////////////////////////////////////////
|
|
template <typename T>
|
|
inline void push(Writer<T> &w, const std::string &s) {
|
|
w.push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
inline void push(Writer<T> &w, const char *s)
|
|
{
|
|
w.push(std::string(s));
|
|
}
|
|
|
|
template <typename T>
|
|
inline void pop(Writer<T> &w)
|
|
{
|
|
w.pop();
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
inline void write(Writer<T> &w, const std::string& s, const U &output)
|
|
{
|
|
w.write(s, output);
|
|
}
|
|
|
|
// Generic reader interface //////////////////////////////////////////////////
|
|
template <typename T>
|
|
inline bool push(Reader<T> &r, const std::string &s)
|
|
{
|
|
return r.push(s);
|
|
}
|
|
|
|
template <typename T>
|
|
inline bool push(Reader<T> &r, const char *s)
|
|
{
|
|
return r.push(std::string(s));
|
|
}
|
|
|
|
template <typename T>
|
|
inline void pop(Reader<T> &r)
|
|
{
|
|
r.pop();
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
inline void read(Reader<T> &r, const std::string &s, U &output)
|
|
{
|
|
r.read(s, output);
|
|
}
|
|
}
|
|
|
|
#endif
|