1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
2018-01-14 22:48:08 +00:00

228 lines
7.1 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
//
// Here, M is some operator
// N and D makeup the rat. poly
//
template <class Impl>
class OneFlavourEvenOddRationalPseudoFermionAction
: public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerHalf;
MultiShiftFunction PowerNegHalf;
MultiShiftFunction PowerQuarter;
MultiShiftFunction PowerNegQuarter;
private:
FermionOperator<Impl> &FermOp; // the basic operator
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us
// historically
// and hasenbusch works better
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
public:
OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl> &Op,
Params &p)
: FermOp(Op),
PhiEven(Op.FermionRedBlackGrid()),
PhiOdd(Op.FermionRedBlackGrid()),
param(p) {
AlgRemez remez(param.lo, param.hi, param.precision);
// MdagM^(+- 1/2)
std::cout << GridLogMessage << "Generating degree " << param.degree
<< " for x^(1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerHalf.Init(remez, param.tolerance, false);
PowerNegHalf.Init(remez, param.tolerance, true);
// MdagM^(+- 1/4)
std::cout << GridLogMessage << "Generating degree " << param.degree
<< " for x^(1/4)" << std::endl;
remez.generateApprox(param.degree, 1, 4);
PowerQuarter.Init(remez, param.tolerance, false);
PowerNegQuarter.Init(remez, param.tolerance, true);
};
virtual std::string action_name(){return "OneFlavourEvenOddRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) {
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
// = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
// Phi = MpcdagMpc^{1/4} eta
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
RealD scale = std::sqrt(0.5);
FermionField eta(FermOp.FermionGrid());
FermionField etaOdd(FermOp.FermionRedBlackGrid());
FermionField etaEven(FermOp.FermionRedBlackGrid());
gaussian(pRNG, eta);
eta = eta * scale;
pickCheckerboard(Even, etaEven, eta);
pickCheckerboard(Odd, etaOdd, eta);
FermOp.ImportGauge(U);
// mutishift CG
SchurDifferentiableOperator<Impl> Mpc(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerQuarter);
msCG(Mpc, etaOdd, PhiOdd);
//////////////////////////////////////////////////////
// FIXME : Clover term not yet..
//////////////////////////////////////////////////////
assert(FermOp.ConstEE() == 1);
PhiEven = zero;
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1/2 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermionField Y(FermOp.FermionRedBlackGrid());
SchurDifferentiableOperator<Impl> Mpc(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,
PowerNegQuarter);
msCG(Mpc, PhiOdd, Y);
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 "
"solve or -1/2 solve faster??? "
<< action << std::endl;
return action;
};
//////////////////////////////////////////////////////
// Need
// dS_f/dU = chi^dag d[N/D] chi
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M +
// bk]^{-1}
//
// Need
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf
// Phi_k
// S = innerprodReal(Phi,Mf Phi);
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
const int Npole = PowerNegHalf.poles.size();
std::vector<FermionField> MPhi_k(Npole, FermOp.FermionRedBlackGrid());
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
GaugeField tmp(FermOp.GaugeGrid());
FermOp.ImportGauge(U);
SchurDifferentiableOperator<Impl> Mpc(FermOp);
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerNegHalf);
msCG(Mpc, PhiOdd, MPhi_k);
dSdU = zero;
for (int k = 0; k < Npole; k++) {
RealD ak = PowerNegHalf.residues[k];
X = MPhi_k[k];
Mpc.Mpc(X, Y);
Mpc.MpcDeriv(tmp, Y, X);
dSdU = dSdU + ak * tmp;
Mpc.MpcDagDeriv(tmp, X, Y);
dSdU = dSdU + ak * tmp;
}
// dSdU = Ta(dSdU);
};
};
NAMESPACE_END(Grid);
#endif