1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-11 14:40:46 +01:00
Grid/Grid/qcd/smearing/HISQSmearing.h

348 lines
12 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/smearing/StoutSmearing.h
Copyright (C) 2019
Author: D. A. Clarke <clarke.davida@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/*
@file HISQSmearing.h
@brief Declares classes related to HISQ smearing
*/
// things like @brief are seen by things like doxygen and javadocs
#pragma once
#include <Grid/Grid.h>
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
NAMESPACE_BEGIN(Grid);
// This is to optimize the SIMD (will also need to be in the class, at least for now)
template<class vobj> void gpermute(vobj & inout,int perm) {
vobj tmp=inout;
if (perm & 0x1) {permute(inout,tmp,0); tmp=inout;}
if (perm & 0x2) {permute(inout,tmp,1); tmp=inout;}
if (perm & 0x4) {permute(inout,tmp,2); tmp=inout;}
if (perm & 0x8) {permute(inout,tmp,3); tmp=inout;}
}
void appendShift(std::vector<Coordinate>& shifts, int mu, int steps=1) {
Coordinate shift(Nd,0);
shift[mu]=steps;
// push_back creates an element at the end of shifts and
// assigns the data in the argument to it.
shifts.push_back(shift);
}
/*! @brief structure holding the link treatment */
struct SmearingParameters {
SmearingParameters(){}
Real c_1; // 1 link
Real c_naik; // Naik term
Real c_3; // 3 link
Real c_5; // 5 link
Real c_7; // 7 link
Real c_lp; // 5 link Lepage
SmearingParameters(Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp) :
c_1(c1),
c_naik(cnaik),
c_3(c3),
c_5(c5),
c_7(c7),
c_lp(clp){}
};
/*! @brief create fat links from link variables */
template<class LGF> // TODO: change to Gimpl?
class Smear_HISQ_fat {
private:
GridCartesian* const _grid;
SmearingParameters _linkTreatment;
public:
// Don't allow default values here.
Smear_HISQ_fat(GridCartesian* grid, Real c1, Real cnaik, Real c3, Real c5, Real c7, Real clp)
: _grid(grid),
_linkTreatment(c1,cnaik,c3,c5,c7,clp) {
assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
}
// Allow to pass a pointer to a C-style, double array for MILC convenience
Smear_HISQ_fat(GridCartesian* grid, double* coeff)
: _grid(grid),
_linkTreatment(coeff[0],coeff[1],coeff[2],coeff[3],coeff[4],coeff[5]) {
assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
}
~Smear_HISQ_fat() {}
void smear(LGF& u_smr, LGF& u_thin) const {
SmearingParameters lt = this->_linkTreatment;
// We create a cell with extra padding 2. This allows us to capture the LePage
// term without needing to save intermediate gauge fields or extra halo exchanges.
// The tradeoff is that we compute extra constructs in the padding.
int depth = 2;
PaddedCell Ghost(depth,this->_grid);
LGF Ughost = Ghost.Exchange(u_thin);
// Array for <tr U_mu_nu>(x)
GridBase *GhostGrid = Ughost.Grid();
LatticeComplex gplaq(GhostGrid);
// This is where the 3-link constructs will be stored
LGF Ughost_fat(Ughost.Grid());
// Next we make the stencils. Writing your own stencil, you're hard-coding the
// periodic BCs, so you don't need the policy-based stuff, at least for now.
// Loop over all orientations, i.e. demand mu != nu.
std::vector<Coordinate> shifts;
for(int mu=0;mu<Nd;mu++)
for(int nu=0;nu<Nd;nu++) {
if(mu==nu) continue;
appendShift(shifts,mu);
appendShift(shifts,nu);
appendShift(shifts,0,0);
Coordinate shift_munu(Nd,0); shift_munu[mu]=1; shift_munu[nu]=-1;
shifts.push_back(shift_munu);
appendShift(shifts,nu,-1);
appendShift(shifts,nu,-1);
}
GeneralLocalStencil gStencil(GhostGrid,shifts);
Ughost_fat=Zero();
// Create the accessors, here U_v and U_fat_v
autoView(U_v , Ughost , CpuRead);
autoView(U_fat_v, Ughost_fat, CpuWrite);
// This is a loop over local sites.
for(int ss=0;ss<U_v.size();ss++){
// This is the stencil index. It increases as we make our way through the spacetime sites,
// plaquette orientations, and as we travel around a plaquette.
int s=0;
for(int mu=0;mu<Nd;mu++)
for(int nu=0;nu<Nd;nu++) {
if(mu==nu) continue;
// shift_mu; shift_mu[mu]=1
// shift_nu; shift_nu[nu]=1
// x
// shift_munu; shift_munu[mu]= 1; shift_munu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
auto SE0 = gStencil.GetEntry(s+0,ss);
auto SE1 = gStencil.GetEntry(s+1,ss);
auto SE2 = gStencil.GetEntry(s+2,ss);
auto SE3 = gStencil.GetEntry(s+3,ss);
auto SE4 = gStencil.GetEntry(s+4,ss);
auto SE5 = gStencil.GetEntry(s+5,ss);
// Each offset corresponds to a site around the plaquette.
int o0 = SE0->_offset;
int o1 = SE1->_offset;
int o2 = SE2->_offset;
int o3 = SE3->_offset;
int o4 = SE4->_offset;
int o5 = SE5->_offset;
// When you're deciding whether to take an adjoint, the question is: how is the
// stored link oriented compared to the one you want? If I imagine myself travelling
// with the to-be-updated link, I have two possible, alternative 3-link paths I can
// take, one starting by going to the left, the other starting by going to the right.
auto U0 = adj(U_v[o0](nu));
auto U1 = U_v[o1](mu);
auto U2 = U_v[o2](nu);
gpermute(U0,SE0->_permute);
gpermute(U1,SE1->_permute);
gpermute(U2,SE2->_permute);
auto U3 = U_v[o3](nu);
auto U4 = U_v[o4](mu);
auto U5 = adj(U_v[o5](nu));
gpermute(U3,SE3->_permute);
gpermute(U4,SE4->_permute);
gpermute(U5,SE5->_permute);
// "left" "right"
auto W = U2*U1*U0 + U5*U4*U3;
U_fat_v[ss](mu) = U_fat_v[ss](mu) + W;
s=s+6;
}
}
u_smr = lt.c_3*Ghost.Extract(Ughost_fat) + lt.c_1*u_thin;
};
// void derivative(const GaugeField& Gauge) const {
// };
};
/*! @brief create long links from link variables. */
template<class LGF>
class Smear_HISQ_Naik {
private:
GridCartesian* const _grid;
public:
// Eventually this will take, e.g., coefficients as argument
Smear_HISQ_Naik(GridCartesian* grid) : _grid(grid) {
assert(Nc == 3 && "HISQ smearing currently implemented only for Nc==3");
}
~Smear_HISQ_Naik() {}
void smear(LGF& u_smr, const LGF& U) const {
int depth = 1;
PaddedCell Ghost(depth,this->_grid);
LGF Ughost = Ghost.Exchange(u_smr);
GridBase *GhostGrid = Ughost.Grid();
LatticeComplex gplaq(GhostGrid);
LGF Ughost_naik(Ughost.Grid());
std::vector<Coordinate> shifts;
for(int mu=0;mu<Nd;mu++){
for(int nu=mu+1;nu<Nd;nu++){
// forward shifts
Coordinate x(Nd,0);
Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
// push_back creates an element at the end of shifts and
// assigns the data in the argument to it.
shifts.push_back(shift_mu);
shifts.push_back(shift_nu);
shifts.push_back(x);
// reverse shifts
shift_nu[nu]=-1;
Coordinate shift_munu(Nd,0); shift_munu[mu]=1; shift_munu[nu]=-1;
shifts.push_back(shift_munu);
shifts.push_back(shift_nu); // in principle you don't need both of these grid points,
shifts.push_back(shift_nu); // but it helps the reader keep track of offsets
}
}
GeneralLocalStencil gStencil(GhostGrid,shifts);
Ughost_naik=Zero();
// Create the accessors, here U_v and U_fat_v
autoView(U_v , Ughost , CpuRead);
autoView(U_naik_v, Ughost_naik, CpuWrite);
// This is a loop over local sites.
for(int ss=0;ss<U_v.size();ss++){
// This is the stencil index. It increases as we make our way through the spacetime sites,
// plaquette orientations, and as we travel around a plaquette.
int s=0;
for(int mu=0;mu<Nd;mu++){
for(int nu=mu+1;nu<Nd;nu++){
// shift_mu; shift_mu[mu]=1
// shift_nu; shift_nu[nu]=1
// x
// shift_munu; shift_munu[mu]= 1; shift_munu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
// shift_nu ; shift_nu[nu]=-1;
auto SE0 = gStencil.GetEntry(s+0,ss);
auto SE1 = gStencil.GetEntry(s+1,ss);
auto SE2 = gStencil.GetEntry(s+2,ss);
auto SE3 = gStencil.GetEntry(s+3,ss);
auto SE4 = gStencil.GetEntry(s+4,ss);
auto SE5 = gStencil.GetEntry(s+5,ss);
// Each offset corresponds to a site around the plaquette.
int o0 = SE0->_offset;
int o1 = SE1->_offset;
int o2 = SE2->_offset;
int o3 = SE3->_offset;
int o4 = SE4->_offset;
int o5 = SE5->_offset;
auto U0 = U_v[o0](nu);
auto U1 = adj(U_v[o1](mu));
auto U2 = adj(U_v[o2](nu));
gpermute(U0,SE0->_permute);
gpermute(U1,SE1->_permute);
gpermute(U2,SE2->_permute);
auto U3 = adj(U_v[o3](nu));
auto U4 = adj(U_v[o4](mu));
auto U5 = U_v[o5](nu);
gpermute(U3,SE3->_permute);
gpermute(U4,SE4->_permute);
gpermute(U5,SE5->_permute);
// Forward contribution from this orientation
auto W = U0*U1*U2;
U_naik_v[ss](mu) = U_naik_v[ss](mu) + W;
// Backward contribution from this orientation
W = U3*U4*U5;
U_naik_v[ss](mu) = U_naik_v[ss](mu) + W;
s=s+6;
}
}
}
// Here is my understanding of this part: The padded cell has its own periodic BCs, so
// if I take a step to the right at the right-most side of the cell, I end up on the
// left-most side. This means that the plaquettes in the padding are wrong. Luckily
// all we care about are the plaquettes in the cell, which we obtain from Extract.
u_smr = Ghost.Extract(Ughost_naik);
};
// void derivative(const GaugeField& Gauge) const {
// };
};
NAMESPACE_END(Grid);