1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-10 22:20:45 +01:00
Grid/Grid/lattice/Lattice_reduction.h
Christopher Kelly 19da647e3c Added support for non-periodic gauge field implementations in the random gauge shift performed at the start of the HMC trajectory
(The above required exposing the gauge implementation to the HMC class through the Integrator class)
Made the random shift optional (default on) through a parameter in HMCparameters
Modified ConjugateBC::CshiftLink such that it supports any shift in  -L < shift < L rather than just +-1
Added a tester for the BC-respecting Cshift
Fixed a missing system header include in SSE4 intrinsics wrapper
Fixed sumD_cpu for single-prec types performing an incorrect conversion to a single-prec data type at the end, that fails to compile on some systems
2022-09-09 12:47:09 -04:00

854 lines
24 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reduction.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/Grid_Eigen_Dense.h>
#if defined(GRID_CUDA)||defined(GRID_HIP)
#include <Grid/lattice/Lattice_reduction_gpu.h>
#endif
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////
// FIXME this should promote to double and accumulate
//////////////////////////////////////////////////////
template<class vobj>
inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
{
typedef typename vobj::scalar_object sobj;
// const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
vobj vvsum=Zero();
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg[ss];
}
sumarray[thr]=Reduce(vvsum);
});
sobj ssum=Zero(); // sum across threads
for(int i=0;i<nthread;i++){
ssum = ssum+sumarray[i];
}
return ssum;
}
template<class vobj>
inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
vobj vvsum=Zero();
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg[ss];
}
sumarray[thr]=Reduce(vvsum);
});
sobj ssum=Zero(); // sum across threads
for(int i=0;i<nthread;i++){
ssum = ssum+sumarray[i];
}
return ssum;
}
/*
Threaded max, don't use for now
template<class Double>
inline Double max(const Double *arg, Integer osites)
{
// const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
std::vector<Double> maxarray(nthread);
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
Double max=arg[0];
for(int ss=myoff;ss<mywork+myoff; ss++){
if( arg[ss] > max ) max = arg[ss];
}
maxarray[thr]=max;
});
Double tmax=maxarray[0];
for(int i=0;i<nthread;i++){
if (maxarray[i]>tmax) tmax = maxarray[i];
}
return tmax;
}
*/
template<class vobj>
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sum_gpu(arg,osites);
#else
return sum_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu_large(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites);
#endif
arg.Grid()->GlobalSum(ssum);
return ssum;
}
template<class vobj>
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu_large(&arg_v[0],osites);
#else
autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites);
#endif
arg.Grid()->GlobalSum(ssum);
return ssum;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Deterministic Reduction operations
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
ComplexD nrm = innerProduct(arg,arg);
return real(nrm);
}
//The global maximum of the site norm2
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
{
typedef typename vobj::tensor_reduced vscalar; //iScalar<iScalar<.... <vPODtype> > >
typedef typename vscalar::scalar_object scalar; //iScalar<iScalar<.... <PODtype> > >
Lattice<vscalar> inner = localNorm2(arg);
auto grid = arg.Grid();
RealD max;
for(int l=0;l<grid->lSites();l++){
Coordinate coor;
scalar val;
RealD r;
grid->LocalIndexToLocalCoor(l,coor);
peekLocalSite(val,inner,coor);
r=real(TensorRemove(val));
if( (l==0) || (r>max)){
max=r;
}
}
grid->GlobalMax(max);
return max;
}
// Double inner product
template<class vobj>
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
{
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
ComplexD nrm;
GridBase *grid = left.Grid();
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
// Might make all code paths go this way.
#if 0
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
{
autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead);
// GPU - SIMT lane compliance...
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v(ss);
auto y_l = right_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
});
}
#else
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
{
autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead);
// GPU - SIMT lane compliance...
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v(ss);
auto y_l = right_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
});
}
#endif
// This is in single precision and fails some tests
auto anrm = sumD(inner_tmp_v,sites);
nrm = anrm;
return nrm;
}
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
GridBase *grid = left.Grid();
ComplexD nrm = rankInnerProduct(left,right);
grid->GlobalSum(nrm);
return nrm;
}
/////////////////////////
// Fast axpby_norm
// z = a x + b y
// return norm z
/////////////////////////
template<class sobj,class vobj> strong_inline RealD
axpy_norm_fast(Lattice<vobj> &z,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
sobj one(1.0);
return axpby_norm_fast(z,a,one,x,y);
}
template<class sobj,class vobj> strong_inline RealD
axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
z.Checkerboard() = x.Checkerboard();
conformable(z,x);
conformable(x,y);
typedef typename vobj::scalar_type scalar_type;
// typedef typename vobj::vector_typeD vector_type;
RealD nrm;
GridBase *grid = x.Grid();
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
// GPU
autoView( x_v, x, AcceleratorRead);
autoView( y_v, y, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite);
#if 0
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
#else
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
accelerator_for( ss, sites, nsimd,{
auto tmp = a*x_v(ss)+b*y_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
#endif
grid->GlobalSum(nrm);
return nrm;
}
template<class vobj> strong_inline void
innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Lattice<vobj> &right)
{
conformable(left,right);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
Vector<ComplexD> tmp(2);
GridBase *grid = left.Grid();
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
// GPU
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
typedef decltype(innerProductD(vobj(),vobj())) norm_t;
Vector<inner_t> inner_tmp(sites);
Vector<norm_t> norm_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
auto norm_tmp_v = &norm_tmp[0];
{
autoView(left_v,left, AcceleratorRead);
autoView(right_v,right,AcceleratorRead);
accelerator_for( ss, sites, 1,{
auto left_tmp = left_v[ss];
inner_tmp_v[ss]=innerProductD(left_tmp,right_v[ss]);
norm_tmp_v [ss]=innerProductD(left_tmp,left_tmp);
});
}
tmp[0] = TensorRemove(sum(inner_tmp_v,sites));
tmp[1] = TensorRemove(sum(norm_tmp_v,sites));
grid->GlobalSumVector(&tmp[0],2); // keep norm Complex -> can use GlobalSumVector
ip = tmp[0];
nrm = real(tmp[1]);
}
template<class Op,class T1>
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
->typename decltype(expr.op.func(eval(0,expr.arg1)))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2>
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
->typename decltype(expr.op.func(eval(0,expr.arg1),eval(0,expr.arg2)))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2,class T3>
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
->typename decltype(expr.op.func(eval(0,expr.arg1),
eval(0,expr.arg2),
eval(0,expr.arg3)
))::scalar_object
{
return sum(closure(expr));
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
{
///////////////////////////////////////////////////////
// FIXME precision promoted summation
// may be important for correlation functions
// But easily avoided by using double precision fields
///////////////////////////////////////////////////////
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_object::scalar_type scalar_type;
GridBase *grid = Data.Grid();
assert(grid!=NULL);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
Vector<vobj> lvSum(rd); // will locally sum vectors first
Vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
ExtractBuffer<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node
for(int r=0;r<rd;r++){
lvSum[r]=Zero();
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
autoView( Data_v, Data, CpuRead);
thread_for( r,rd, {
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
lvSum[r]=lvSum[r]+Data_v[ss];
}
}
});
// Sum across simd lanes in the plane, breaking out orthog dir.
Coordinate icoor(Nd);
for(int rt=0;rt<rd;rt++){
extract(lvSum[rt],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx];
}
}
// sum over nodes.
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
result[t]=lsSum[lt];
} else {
result[t]=Zero();
}
}
scalar_type * ptr = (scalar_type *) &result[0];
int words = fd*sizeof(sobj)/sizeof(scalar_type);
grid->GlobalSumVector(ptr, words);
}
template<class vobj> inline
std::vector<typename vobj::scalar_object>
sliceSum(const Lattice<vobj> &Data,int orthogdim)
{
std::vector<typename vobj::scalar_object> result;
sliceSum(Data,result,orthogdim);
return result;
}
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs.Grid();
assert(grid!=NULL);
conformable(grid,rhs.Grid());
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
Vector<vector_type> lvSum(rd); // will locally sum vectors first
Vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
ExtractBuffer<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=Zero();
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
autoView( lhv, lhs, CpuRead);
autoView( rhv, rhs, CpuRead);
thread_for( r,rd,{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
vector_type vv = TensorRemove(innerProduct(lhv[ss],rhv[ss]));
lvSum[r]=lvSum[r]+vv;
}
}
});
// Sum across simd lanes in the plane, breaking out orthog dir.
Coordinate icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
temp._internal = lvSum[rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal;
}
}
// sum over nodes.
scalar_type gsum;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum=lsSum[lt];
} else {
gsum=scalar_type(0.0);
}
grid->GlobalSum(gsum);
result[t]=gsum;
}
}
template<class vobj>
static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = rhs.Grid()->GlobalDimensions()[Orthog];
std::vector<ComplexD> ip(Nblock);
sn.resize(Nblock);
sliceInnerProductVector(ip,rhs,rhs,Orthog);
for(int ss=0;ss<Nblock;ss++){
sn[ss] = real(ip[ss]);
}
};
template<class vobj>
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int orthogdim,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::tensor_reduced tensor_reduced;
scalar_type zscale(scale);
GridBase *grid = X.Grid();
int Nsimd =grid->Nsimd();
int Nblock =grid->GlobalDimensions()[orthogdim];
int fd =grid->_fdimensions[orthogdim];
int ld =grid->_ldimensions[orthogdim];
int rd =grid->_rdimensions[orthogdim];
int e1 =grid->_slice_nblock[orthogdim];
int e2 =grid->_slice_block [orthogdim];
int stride =grid->_slice_stride[orthogdim];
Coordinate icoor;
for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
vector_type av;
for(int l=0;l<Nsimd;l++){
grid->iCoorFromIindex(icoor,l);
int ldx =r+icoor[orthogdim]*rd;
scalar_type *as =(scalar_type *)&av;
as[l] = scalar_type(a[ldx])*zscale;
}
tensor_reduced at; at=av;
autoView( Rv, R, CpuWrite);
autoView( Xv, X, CpuRead);
autoView( Yv, Y, CpuRead);
thread_for2d( n, e1, b,e2, {
int ss= so+n*stride+b;
Rv[ss] = at*Xv[ss]+Yv[ss];
});
}
};
/*
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
{
int NN = BlockSolverGrid->_ndimension;
int nsimd = BlockSolverGrid->Nsimd();
std::vector<int> latt_phys(0);
std::vector<int> simd_phys(0);
std::vector<int> mpi_phys(0);
for(int d=0;d<NN;d++){
if( d!=Orthog ) {
latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
mpi_phys.push_back(BlockSolverGrid->_processors[d]);
}
}
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
}
*/
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( X_v, X, CpuRead);
autoView( Y_v, Y, CpuRead);
autoView( R_v, R, CpuWrite);
thread_region
{
Vector<vobj> s_x(Nblock);
thread_for_collapse_in_region(2, n,nblock, {
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y_v[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
};
template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
GridBase *FullGrid = X.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
// Lattice<vobj> Xslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl=1;
//FIXME package in a convenient iterator
// thread_for2d_in_region
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
autoView( R_v, R, CpuWrite);
autoView( X_v, X, CpuRead);
thread_region
{
std::vector<vobj> s_x(Nblock);
thread_for_collapse_in_region( 2 ,n,nblock,{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X_v[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = s_x[0]*(scale*aa(0,i));
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R_v[o+i*ostride]=dot;
}
}});
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs.Grid();
// GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
// Lattice<vobj> Lslice(SliceGrid);
// Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
assert( FullGrid->_simd_layout[Orthog]==1);
// int nh = FullGrid->_ndimension;
// int nl = SliceGrid->_ndimension;
// int nl = nh-1;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
autoView( lhs_v, lhs, CpuRead);
autoView( rhs_v, rhs, CpuRead);
thread_region
{
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
thread_for_collapse_in_region( 2, n,nblock,{
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs_v[o+i*ostride];
Right[i] = rhs_v[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
auto rtmp = TensorRemove(tmp);
auto red = Reduce(rtmp);
mat_thread(i,j) += std::complex<double>(real(red),imag(red));
}}
}});
thread_critical
{
mat += mat_thread;
}
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
ComplexD sum = mat(i,j);
FullGrid->GlobalSum(sum);
mat(i,j)=sum;
}}
return;
}
NAMESPACE_END(Grid);