1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 18:25:37 +00:00
Grid/lib/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockImplicitlyRestartedLanczos.h
2017-10-10 14:15:11 +01:00

755 lines
22 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Chulwoo Jung <chulwoo@bnl.gov>
Author: Christoph Lehner <clehner@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BIRL_H
#define GRID_BIRL_H
#include <string.h> //memset
#include <zlib.h>
#include <sys/stat.h>
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockedGrid.h>
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldBasisVector.h>
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockProjector.h>
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldVectorIO.h>
namespace Grid {
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
/////////////////////////////////////////////////////////////
template<class Field>
class BlockImplicitlyRestartedLanczos {
const RealD small = 1.0e-16;
public:
int lock;
int get;
int Niter;
int converged;
int Nminres; // Minimum number of restarts; only check for convergence after
int Nstop; // Number of evecs checked for convergence
int Nk; // Number of converged sought
int Np; // Np -- Number of spare vecs in kryloc space
int Nm; // Nm -- total number of vectors
int orth_period;
RealD OrthoTime;
RealD eresid, betastp;
SortEigen<Field> _sort;
LinearFunction<Field> &_HermOp;
LinearFunction<Field> &_HermOpTest;
/////////////////////////
// Constructor
/////////////////////////
BlockImplicitlyRestartedLanczos(
LinearFunction<Field> & HermOp,
LinearFunction<Field> & HermOpTest,
int _Nstop, // sought vecs
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
RealD _betastp, // if beta(k) < betastp: converged
int _Niter, // Max iterations
int _Nminres, int _orth_period = 1) :
_HermOp(HermOp),
_HermOpTest(HermOpTest),
Nstop(_Nstop),
Nk(_Nk),
Nm(_Nm),
eresid(_eresid),
betastp(_betastp),
Niter(_Niter),
Nminres(_Nminres),
orth_period(_orth_period)
{
Np = Nm-Nk; assert(Np>0);
};
BlockImplicitlyRestartedLanczos(
LinearFunction<Field> & HermOp,
LinearFunction<Field> & HermOpTest,
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
RealD _betastp, // if beta(k) < betastp: converged
int _Niter, // Max iterations
int _Nminres,
int _orth_period = 1) :
_HermOp(HermOp),
_HermOpTest(HermOpTest),
Nstop(_Nk),
Nk(_Nk),
Nm(_Nm),
eresid(_eresid),
betastp(_betastp),
Niter(_Niter),
Nminres(_Nminres),
orth_period(_orth_period)
{
Np = Nm-Nk; assert(Np>0);
};
/* Saad PP. 195
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
2. For k = 1,2,...,m Do:
3. wk:=Avkβkv_{k1}
4. αk:=(wk,vk) //
5. wk:=wkαkvk // wk orthog vk
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
7. vk+1 := wk/βk+1
8. EndDo
*/
void step(std::vector<RealD>& lmd,
std::vector<RealD>& lme,
BasisFieldVector<Field>& evec,
Field& w,int Nm,int k)
{
assert( k< Nm );
GridStopWatch gsw_op,gsw_o;
Field& evec_k = evec[k];
gsw_op.Start();
_HermOp(evec_k,w);
gsw_op.Stop();
if(k>0){
w -= lme[k-1] * evec[k-1];
}
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
RealD alph = real(zalph);
w = w - alph * evec_k;// 5. wk:=wkαkvk
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
// 7. vk+1 := wk/βk+1
std::cout<<GridLogMessage << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
const RealD tiny = 1.0e-20;
if ( beta < tiny ) {
std::cout<<GridLogMessage << " beta is tiny "<<beta<<std::endl;
}
lmd[k] = alph;
lme[k] = beta;
gsw_o.Start();
if (k>0 && k % orth_period == 0) {
orthogonalize(w,evec,k); // orthonormalise
}
gsw_o.Stop();
if(k < Nm-1) {
evec[k+1] = w;
}
std::cout << GridLogMessage << "Timing: operator=" << gsw_op.Elapsed() <<
" orth=" << gsw_o.Elapsed() << std::endl;
}
void qr_decomp(std::vector<RealD>& lmd,
std::vector<RealD>& lme,
int Nk,
int Nm,
std::vector<RealD>& Qt,
RealD Dsh,
int kmin,
int kmax)
{
int k = kmin-1;
RealD x;
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
RealD c = ( lmd[k] -Dsh) *Fden;
RealD s = -lme[k] *Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k+1];
RealD tmpb = lme[k];
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
x =-s*lme[k+1];
lme[k+1] = c*lme[k+1];
for(int i=0; i<Nk; ++i){
RealD Qtmp1 = Qt[i+Nm*k ];
RealD Qtmp2 = Qt[i+Nm*(k+1)];
Qt[i+Nm*k ] = c*Qtmp1 - s*Qtmp2;
Qt[i+Nm*(k+1)] = s*Qtmp1 + c*Qtmp2;
}
// Givens transformations
for(int k = kmin; k < kmax-1; ++k){
RealD Fden = 1.0/hypot(x,lme[k-1]);
RealD c = lme[k-1]*Fden;
RealD s = - x*Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k+1];
RealD tmpb = lme[k];
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
lme[k-1] = c*lme[k-1] -s*x;
if(k != kmax-2){
x = -s*lme[k+1];
lme[k+1] = c*lme[k+1];
}
for(int i=0; i<Nk; ++i){
RealD Qtmp1 = Qt[i+Nm*k ];
RealD Qtmp2 = Qt[i+Nm*(k+1)];
Qt[i+Nm*k ] = c*Qtmp1 -s*Qtmp2;
Qt[i+Nm*(k+1)] = s*Qtmp1 +c*Qtmp2;
}
}
}
#ifdef USE_LAPACK_IRL
#define LAPACK_INT int
//long long
void diagonalize_lapack(std::vector<RealD>& lmd,
std::vector<RealD>& lme,
int N1,
int N2,
std::vector<RealD>& Qt,
GridBase *grid){
std::cout << GridLogMessage << "diagonalize_lapack start\n";
GridStopWatch gsw;
const int size = Nm;
// tevals.resize(size);
// tevecs.resize(size);
LAPACK_INT NN = N1;
std::vector<double> evals_tmp(NN);
std::vector<double> evec_tmp(NN*NN);
memset(&evec_tmp[0],0,sizeof(double)*NN*NN);
// double AA[NN][NN];
std::vector<double> DD(NN);
std::vector<double> EE(NN);
for (int i = 0; i< NN; i++)
for (int j = i - 1; j <= i + 1; j++)
if ( j < NN && j >= 0 ) {
if (i==j) DD[i] = lmd[i];
if (i==j) evals_tmp[i] = lmd[i];
if (j==(i-1)) EE[j] = lme[j];
}
LAPACK_INT evals_found;
LAPACK_INT lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
LAPACK_INT liwork = 3+NN*10 ;
std::vector<LAPACK_INT> iwork(liwork);
std::vector<double> work(lwork);
std::vector<LAPACK_INT> isuppz(2*NN);
char jobz = 'V'; // calculate evals & evecs
char range = 'I'; // calculate all evals
// char range = 'A'; // calculate all evals
char uplo = 'U'; // refer to upper half of original matrix
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
std::vector<int> ifail(NN);
LAPACK_INT info;
// int total = QMP_get_number_of_nodes();
// int node = QMP_get_node_number();
// GridBase *grid = evec[0]._grid;
int total = grid->_Nprocessors;
int node = grid->_processor;
int interval = (NN/total)+1;
double vl = 0.0, vu = 0.0;
LAPACK_INT il = interval*node+1 , iu = interval*(node+1);
if (iu > NN) iu=NN;
double tol = 0.0;
if (1) {
memset(&evals_tmp[0],0,sizeof(double)*NN);
if ( il <= NN){
std::cout << GridLogMessage << "dstegr started" << std::endl;
gsw.Start();
dstegr(&jobz, &range, &NN,
(double*)&DD[0], (double*)&EE[0],
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
&tol, // tolerance
&evals_found, &evals_tmp[0], (double*)&evec_tmp[0], &NN,
&isuppz[0],
&work[0], &lwork, &iwork[0], &liwork,
&info);
gsw.Stop();
std::cout << GridLogMessage << "dstegr completed in " << gsw.Elapsed() << std::endl;
for (int i = iu-1; i>= il-1; i--){
evals_tmp[i] = evals_tmp[i - (il-1)];
if (il>1) evals_tmp[i-(il-1)]=0.;
for (int j = 0; j< NN; j++){
evec_tmp[i*NN + j] = evec_tmp[(i - (il-1)) * NN + j];
if (il>1) evec_tmp[(i-(il-1)) * NN + j]=0.;
}
}
}
{
// QMP_sum_double_array(evals_tmp,NN);
// QMP_sum_double_array((double *)evec_tmp,NN*NN);
grid->GlobalSumVector(&evals_tmp[0],NN);
grid->GlobalSumVector(&evec_tmp[0],NN*NN);
}
}
// cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
for(int i=0;i<NN;i++){
for(int j=0;j<NN;j++)
Qt[(NN-1-i)*N2+j]=evec_tmp[i*NN + j];
lmd [NN-1-i]=evals_tmp[i];
}
std::cout << GridLogMessage << "diagonalize_lapack complete\n";
}
#undef LAPACK_INT
#endif
void diagonalize(std::vector<RealD>& lmd,
std::vector<RealD>& lme,
int N2,
int N1,
std::vector<RealD>& Qt,
GridBase *grid)
{
#ifdef USE_LAPACK_IRL
const int check_lapack=0; // just use lapack if 0, check against lapack if 1
if(!check_lapack)
return diagonalize_lapack(lmd,lme,N2,N1,Qt,grid);
std::vector <RealD> lmd2(N1);
std::vector <RealD> lme2(N1);
std::vector<RealD> Qt2(N1*N1);
for(int k=0; k<N1; ++k){
lmd2[k] = lmd[k];
lme2[k] = lme[k];
}
for(int k=0; k<N1*N1; ++k)
Qt2[k] = Qt[k];
// diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
#endif
int Niter = 10000*N1;
int kmin = 1;
int kmax = N2;
// (this should be more sophisticated)
for(int iter=0; ; ++iter){
if ( (iter+1)%(100*N1)==0)
std::cout<<GridLogMessage << "[QL method] Not converged - iteration "<<iter+1<<"\n";
// determination of 2x2 leading submatrix
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
// (Dsh: shift)
// transformation
qr_decomp(lmd,lme,N2,N1,Qt,Dsh,kmin,kmax);
// Convergence criterion (redef of kmin and kamx)
for(int j=kmax-1; j>= kmin; --j){
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
if(fabs(lme[j-1])+dds > dds){
kmax = j+1;
goto continued;
}
}
Niter = iter;
#ifdef USE_LAPACK_IRL
if(check_lapack){
const double SMALL=1e-8;
diagonalize_lapack(lmd2,lme2,N2,N1,Qt2,grid);
std::vector <RealD> lmd3(N2);
for(int k=0; k<N2; ++k) lmd3[k]=lmd[k];
_sort.push(lmd3,N2);
_sort.push(lmd2,N2);
for(int k=0; k<N2; ++k){
if (fabs(lmd2[k] - lmd3[k]) >SMALL) std::cout<<GridLogMessage <<"lmd(qr) lmd(lapack) "<< k << ": " << lmd2[k] <<" "<< lmd3[k] <<std::endl;
// if (fabs(lme2[k] - lme[k]) >SMALL) std::cout<<GridLogMessage <<"lme(qr)-lme(lapack) "<< k << ": " << lme2[k] - lme[k] <<std::endl;
}
for(int k=0; k<N1*N1; ++k){
// if (fabs(Qt2[k] - Qt[k]) >SMALL) std::cout<<GridLogMessage <<"Qt(qr)-Qt(lapack) "<< k << ": " << Qt2[k] - Qt[k] <<std::endl;
}
}
#endif
return;
continued:
for(int j=0; j<kmax-1; ++j){
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
if(fabs(lme[j])+dds > dds){
kmin = j+1;
break;
}
}
}
std::cout<<GridLogMessage << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
abort();
}
#if 1
template<typename T>
static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
void orthogonalize(Field& w,
BasisFieldVector<Field>& evec,
int k)
{
double t0=-usecond()/1e6;
evec.orthogonalize(w,k);
normalise(w);
t0+=usecond()/1e6;
OrthoTime +=t0;
}
void setUnit_Qt(int Nm, std::vector<RealD> &Qt) {
for(int i=0; i<Qt.size(); ++i) Qt[i] = 0.0;
for(int k=0; k<Nm; ++k) Qt[k + k*Nm] = 1.0;
}
/* Rudy Arthur's thesis pp.137
------------------------
Require: M > K P = M K †
Compute the factorization AVM = VM HM + fM eM
repeat
Q=I
for i = 1,...,P do
QiRi =HM θiI Q = QQi
H M = Q †i H M Q i
end for
βK =HM(K+1,K) σK =Q(M,K)
r=vK+1βK +rσK
VK =VM(1:M)Q(1:M,1:K)
HK =HM(1:K,1:K)
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
until convergence
*/
void calc(std::vector<RealD>& eval,
BasisFieldVector<Field>& evec,
const Field& src,
int& Nconv,
bool reverse,
int SkipTest)
{
GridBase *grid = evec._v[0]._grid;//evec.get(0 + evec_offset)._grid;
assert(grid == src._grid);
std::cout<<GridLogMessage << " -- Nk = " << Nk << " Np = "<< Np << std::endl;
std::cout<<GridLogMessage << " -- Nm = " << Nm << std::endl;
std::cout<<GridLogMessage << " -- size of eval = " << eval.size() << std::endl;
std::cout<<GridLogMessage << " -- size of evec = " << evec.size() << std::endl;
assert(Nm <= evec.size() && Nm <= eval.size());
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
RealD evalMaxApprox = 0.0;
{
auto src_n = src;
auto tmp = src;
const int _MAX_ITER_IRL_MEVAPP_ = 50;
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
_HermOpTest(src_n,tmp);
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
i=_MAX_ITER_IRL_MEVAPP_;
evalMaxApprox = na;
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
src_n = tmp;
}
}
std::vector<RealD> lme(Nm);
std::vector<RealD> lme2(Nm);
std::vector<RealD> eval2(Nm);
std::vector<RealD> eval2_copy(Nm);
std::vector<RealD> Qt(Nm*Nm);
Field f(grid);
Field v(grid);
int k1 = 1;
int k2 = Nk;
Nconv = 0;
RealD beta_k;
// Set initial vector
evec[0] = src;
normalise(evec[0]);
std:: cout<<GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0])<<std::endl;
// Initial Nk steps
OrthoTime=0.;
double t0=usecond()/1e6;
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
double t1=usecond()/1e6;
std::cout<<GridLogMessage <<"IRL::Initial steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
t1=usecond()/1e6;
// Restarting loop begins
for(int iter = 0; iter<Niter; ++iter){
std::cout<<GridLogMessage<<"\n Restart iteration = "<< iter << std::endl;
//
// Rudy does a sort first which looks very different. Getting fed up with sorting out the algo defs.
// We loop over
//
OrthoTime=0.;
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
t1=usecond()/1e6;
std::cout<<GridLogMessage <<"IRL:: "<<Np <<" steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
f *= lme[Nm-1];
t1=usecond()/1e6;
// getting eigenvalues
for(int k=0; k<Nm; ++k){
eval2[k] = eval[k+k1-1];
lme2[k] = lme[k+k1-1];
}
setUnit_Qt(Nm,Qt);
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
t1=usecond()/1e6;
std::cout<<GridLogMessage <<"IRL:: diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
// sorting
eval2_copy = eval2;
_sort.push(eval2,Nm);
t1=usecond()/1e6;
std::cout<<GridLogMessage <<"IRL:: eval sorting: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
// Implicitly shifted QR transformations
setUnit_Qt(Nm,Qt);
for(int ip=0; ip<k2; ++ip){
std::cout<<GridLogMessage << "eval "<< ip << " "<< eval2[ip] << std::endl;
}
for(int ip=k2; ip<Nm; ++ip){
std::cout<<GridLogMessage << "qr_decomp "<< ip << " "<< eval2[ip] << std::endl;
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
}
t1=usecond()/1e6;
std::cout<<GridLogMessage <<"IRL::qr_decomp: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
assert(k2<Nm);
assert(k2<Nm);
assert(k1>0);
evec.rotate(Qt,k1-1,k2+1,0,Nm,Nm);
t1=usecond()/1e6;
std::cout<<GridLogMessage <<"IRL::QR rotation: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
fflush(stdout);
// Compressed vector f and beta(k2)
f *= Qt[Nm-1+Nm*(k2-1)];
f += lme[k2-1] * evec[k2];
beta_k = norm2(f);
beta_k = sqrt(beta_k);
std::cout<<GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
RealD betar = 1.0/beta_k;
evec[k2] = betar * f;
lme[k2-1] = beta_k;
// Convergence test
for(int k=0; k<Nm; ++k){
eval2[k] = eval[k];
lme2[k] = lme[k];
std::cout<<GridLogMessage << "eval2[" << k << "] = " << eval2[k] << std::endl;
}
setUnit_Qt(Nm,Qt);
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
t1=usecond()/1e6;
std::cout<<GridLogMessage <<"IRL::diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
Nconv = 0;
if (iter >= Nminres) {
std::cout << GridLogMessage << "Rotation to test convergence " << std::endl;
Field ev0_orig(grid);
ev0_orig = evec[0];
evec.rotate(Qt,0,Nk,0,Nk,Nm);
{
std::cout << GridLogMessage << "Test convergence" << std::endl;
Field B(grid);
for(int j = 0; j<Nk; j+=SkipTest){
B=evec[j];
//std::cout << "Checkerboard: " << evec[j].checkerboard << std::endl;
B.checkerboard = evec[0].checkerboard;
_HermOpTest(B,v);
RealD vnum = real(innerProduct(B,v)); // HermOp.
RealD vden = norm2(B);
RealD vv0 = norm2(v);
eval2[j] = vnum/vden;
v -= eval2[j]*B;
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<j<<"] "
<<"eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[j] << " (" << eval2_copy[j] << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv
<<" "<< vnum/(sqrt(vden)*sqrt(vv0))
<< " norm(B["<<j<<"])="<< vden <<std::endl;
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
if((vv<eresid*eresid) && (j == Nconv) ){
Nconv+=SkipTest;
}
}
// test if we converged, if so, terminate
t1=usecond()/1e6;
std::cout<<GridLogMessage <<"IRL::convergence testing: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
std::cout<<GridLogMessage<<" #modes converged: "<<Nconv<<std::endl;
if( Nconv>=Nstop || beta_k < betastp){
goto converged;
}
std::cout << GridLogMessage << "Rotate back" << std::endl;
//B[j] +=Qt[k+_Nm*j] * _v[k]._odata[ss];
{
Eigen::MatrixXd qm = Eigen::MatrixXd::Zero(Nk,Nk);
for (int k=0;k<Nk;k++)
for (int j=0;j<Nk;j++)
qm(j,k) = Qt[k+Nm*j];
GridStopWatch timeInv;
timeInv.Start();
Eigen::MatrixXd qmI = qm.inverse();
timeInv.Stop();
std::vector<RealD> QtI(Nm*Nm);
for (int k=0;k<Nk;k++)
for (int j=0;j<Nk;j++)
QtI[k+Nm*j] = qmI(j,k);
RealD res_check_rotate_inverse = (qm*qmI - Eigen::MatrixXd::Identity(Nk,Nk)).norm(); // sqrt( |X|^2 )
assert(res_check_rotate_inverse < 1e-7);
evec.rotate(QtI,0,Nk,0,Nk,Nm);
axpy(ev0_orig,-1.0,evec[0],ev0_orig);
std::cout << GridLogMessage << "Rotation done (in " << timeInv.Elapsed() << " = " << timeInv.useconds() << " us" <<
", error = " << res_check_rotate_inverse <<
"); | evec[0] - evec[0]_orig | = " << ::sqrt(norm2(ev0_orig)) << std::endl;
}
}
} else {
std::cout << GridLogMessage << "iter < Nminres: do not yet test for convergence\n";
} // end of iter loop
}
std::cout<<GridLogMessage<<"\n NOT converged.\n";
abort();
converged:
if (SkipTest == 1) {
eval = eval2;
} else {
// test quickly
for (int j=0;j<Nstop;j+=SkipTest) {
std::cout<<GridLogMessage << "Eigenvalue[" << j << "] = " << eval2[j] << " (" << eval2_copy[j] << ")" << std::endl;
}
eval2_copy.resize(eval2.size());
eval = eval2_copy;
}
evec.sortInPlace(eval,reverse);
{
// test
for (int j=0;j<Nstop;j++) {
std::cout<<GridLogMessage << " |e[" << j << "]|^2 = " << norm2(evec[j]) << std::endl;
}
}
//_sort.push(eval,evec,Nconv);
//evec.sort(eval,Nconv);
std::cout<<GridLogMessage << "\n Converged\n Summary :\n";
std::cout<<GridLogMessage << " -- Iterations = "<< Nconv << "\n";
std::cout<<GridLogMessage << " -- beta(k) = "<< beta_k << "\n";
std::cout<<GridLogMessage << " -- Nconv = "<< Nconv << "\n";
}
#endif
};
}
#endif