1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 10:15:36 +00:00
Grid/lib/algorithms/iterative/SimpleLanczos.h
2017-08-11 01:35:25 -04:00

934 lines
22 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Chulwoo Jung <chulwoo@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LANC_H
#define GRID_LANC_H
#include <string.h> //memset
#ifdef USE_LAPACK
#ifdef USE_MKL
#include<mkl_lapack.h>
#else
void LAPACK_dstegr (char *jobz, char *range, int *n, double *d, double *e,
double *vl, double *vu, int *il, int *iu, double *abstol,
int *m, double *w, double *z, int *ldz, int *isuppz,
double *work, int *lwork, int *iwork, int *liwork,
int *info);
//#include <lapacke/lapacke.h>
#endif
#endif
#include <Grid/algorithms/densematrix/DenseMatrix.h>
//#include <Grid/algorithms/iterative/EigenSort.h>
// eliminate temorary vector in calc()
#define MEM_SAVE
namespace Grid
{
struct Bisection
{
#if 0
static void get_eig2 (int row_num, std::vector < RealD > &ALPHA,
std::vector < RealD > &BETA,
std::vector < RealD > &eig)
{
int i, j;
std::vector < RealD > evec1 (row_num + 3);
std::vector < RealD > evec2 (row_num + 3);
RealD eps2;
ALPHA[1] = 0.;
BETHA[1] = 0.;
for (i = 0; i < row_num - 1; i++)
{
ALPHA[i + 1] = A[i * (row_num + 1)].real ();
BETHA[i + 2] = A[i * (row_num + 1) + 1].real ();
}
ALPHA[row_num] = A[(row_num - 1) * (row_num + 1)].real ();
bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-10, 1e-10, evec1, eps2);
bisec (ALPHA, BETHA, row_num, 1, row_num, 1e-16, 1e-16, evec2, eps2);
// Do we really need to sort here?
int begin = 1;
int end = row_num;
int swapped = 1;
while (swapped)
{
swapped = 0;
for (i = begin; i < end; i++)
{
if (mag (evec2[i]) > mag (evec2[i + 1]))
{
swap (evec2 + i, evec2 + i + 1);
swapped = 1;
}
}
end--;
for (i = end - 1; i >= begin; i--)
{
if (mag (evec2[i]) > mag (evec2[i + 1]))
{
swap (evec2 + i, evec2 + i + 1);
swapped = 1;
}
}
begin++;
}
for (i = 0; i < row_num; i++)
{
for (j = 0; j < row_num; j++)
{
if (i == j)
H[i * row_num + j] = evec2[i + 1];
else
H[i * row_num + j] = 0.;
}
}
}
#endif
static void bisec (std::vector < RealD > &c,
std::vector < RealD > &b,
int n,
int m1,
int m2,
RealD eps1,
RealD relfeh, std::vector < RealD > &x, RealD & eps2)
{
std::vector < RealD > wu (n + 2);
RealD h, q, x1, xu, x0, xmin, xmax;
int i, a, k;
b[1] = 0.0;
xmin = c[n] - fabs (b[n]);
xmax = c[n] + fabs (b[n]);
for (i = 1; i < n; i++)
{
h = fabs (b[i]) + fabs (b[i + 1]);
if (c[i] + h > xmax)
xmax = c[i] + h;
if (c[i] - h < xmin)
xmin = c[i] - h;
}
xmax *= 2.;
eps2 = relfeh * ((xmin + xmax) > 0.0 ? xmax : -xmin);
if (eps1 <= 0.0)
eps1 = eps2;
eps2 = 0.5 * eps1 + 7.0 * (eps2);
x0 = xmax;
for (i = m1; i <= m2; i++)
{
x[i] = xmax;
wu[i] = xmin;
}
for (k = m2; k >= m1; k--)
{
xu = xmin;
i = k;
do
{
if (xu < wu[i])
{
xu = wu[i];
i = m1 - 1;
}
i--;
}
while (i >= m1);
if (x0 > x[k])
x0 = x[k];
while ((x0 - xu) > 2 * relfeh * (fabs (xu) + fabs (x0)) + eps1)
{
x1 = (xu + x0) / 2;
a = 0;
q = 1.0;
for (i = 1; i <= n; i++)
{
q =
c[i] - x1 -
((q != 0.0) ? b[i] * b[i] / q : fabs (b[i]) / relfeh);
if (q < 0)
a++;
}
// printf("x1=%0.14e a=%d\n",x1,a);
if (a < k)
{
if (a < m1)
{
xu = x1;
wu[m1] = x1;
}
else
{
xu = x1;
wu[a + 1] = x1;
if (x[a] > x1)
x[a] = x1;
}
}
else
x0 = x1;
}
printf ("x0=%0.14e xu=%0.14e k=%d\n", x0, xu, k);
x[k] = (x0 + xu) / 2;
}
}
};
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
/////////////////////////////////////////////////////////////
template < class Field > class SimpleLanczos
{
const RealD small = 1.0e-16;
public:
int lock;
int get;
int Niter;
int converged;
int Nstop; // Number of evecs checked for convergence
int Nk; // Number of converged sought
int Np; // Np -- Number of spare vecs in kryloc space
int Nm; // Nm -- total number of vectors
RealD OrthoTime;
RealD eresid;
SortEigen < Field > _sort;
LinearOperatorBase < Field > &_Linop;
OperatorFunction < Field > &_poly;
/////////////////////////
// Constructor
/////////////////////////
void init (void)
{
};
void Abort (int ff, DenseVector < RealD > &evals,
DenseVector < DenseVector < RealD > >&evecs);
SimpleLanczos (LinearOperatorBase < Field > &Linop, // op
OperatorFunction < Field > &poly, // polynmial
int _Nstop, // sought vecs
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
int _Niter): // Max iterations
_Linop (Linop),
_poly (poly),
Nstop (_Nstop), Nk (_Nk), Nm (_Nm), eresid (_eresid), Niter (_Niter)
{
Np = Nm - Nk;
assert (Np > 0);
};
/////////////////////////
// Sanity checked this routine (step) against Saad.
/////////////////////////
void RitzMatrix (DenseVector < Field > &evec, int k)
{
if (1)
return;
GridBase *grid = evec[0]._grid;
Field w (grid);
std::cout << GridLogMessage << "RitzMatrix " << std::endl;
for (int i = 0; i < k; i++)
{
_Linop.HermOp (evec[i], w);
// _poly(_Linop,evec[i],w);
std::cout << GridLogMessage << "[" << i << "] ";
for (int j = 0; j < k; j++)
{
ComplexD in = innerProduct (evec[j], w);
if (fabs ((double) i - j) > 1)
{
if (abs (in) > 1.0e-9)
{
std::cout << GridLogMessage << "oops" << std::endl;
abort ();
}
else
std::cout << GridLogMessage << " 0 ";
}
else
{
std::cout << GridLogMessage << " " << in << " ";
}
}
std::cout << GridLogMessage << std::endl;
}
}
void step (DenseVector < RealD > &lmd,
DenseVector < RealD > &lme,
Field & last, Field & current, Field & next, uint64_t k)
{
if (lmd.size () <= k)
lmd.resize (k + Nm);
if (lme.size () <= k)
lme.resize (k + Nm);
// _poly(_Linop,current,next ); // 3. wk:=Avkβkv_{k1}
_Linop.HermOp (current, next); // 3. wk:=Avkβkv_{k1}
if (k > 0)
{
next -= lme[k - 1] * last;
}
// std::cout<<GridLogMessage << "<last|next>" << innerProduct(last,next) <<std::endl;
ComplexD zalph = innerProduct (current, next); // 4. αk:=(wk,vk)
RealD alph = real (zalph);
next = next - alph * current; // 5. wk:=wkαkvk
// std::cout<<GridLogMessage << "<current|next>" << innerProduct(current,next) <<std::endl;
RealD beta = normalise (next); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
// 7. vk+1 := wk/βk+1
// norm=beta;
int interval = Nm / 100 + 1;
if ((k % interval) == 0)
std::
cout << GridLogMessage << k << " : alpha = " << zalph << " beta " <<
beta << std::endl;
const RealD tiny = 1.0e-20;
if (beta < tiny)
{
std::cout << GridLogMessage << " beta is tiny " << beta << std::
endl;
}
lmd[k] = alph;
lme[k] = beta;
}
void qr_decomp (DenseVector < RealD > &lmd,
DenseVector < RealD > &lme,
int Nk,
int Nm,
DenseVector < RealD > &Qt, RealD Dsh, int kmin, int kmax)
{
int k = kmin - 1;
RealD x;
RealD Fden = 1.0 / hypot (lmd[k] - Dsh, lme[k]);
RealD c = (lmd[k] - Dsh) * Fden;
RealD s = -lme[k] * Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k + 1];
RealD tmpb = lme[k];
lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
x = -s * lme[k + 1];
lme[k + 1] = c * lme[k + 1];
for (int i = 0; i < Nk; ++i)
{
RealD Qtmp1 = Qt[i + Nm * k];
RealD Qtmp2 = Qt[i + Nm * (k + 1)];
Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
}
// Givens transformations
for (int k = kmin; k < kmax - 1; ++k)
{
RealD Fden = 1.0 / hypot (x, lme[k - 1]);
RealD c = lme[k - 1] * Fden;
RealD s = -x * Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k + 1];
RealD tmpb = lme[k];
lmd[k] = c * c * tmpa1 + s * s * tmpa2 - 2.0 * c * s * tmpb;
lmd[k + 1] = s * s * tmpa1 + c * c * tmpa2 + 2.0 * c * s * tmpb;
lme[k] = c * s * (tmpa1 - tmpa2) + (c * c - s * s) * tmpb;
lme[k - 1] = c * lme[k - 1] - s * x;
if (k != kmax - 2)
{
x = -s * lme[k + 1];
lme[k + 1] = c * lme[k + 1];
}
for (int i = 0; i < Nk; ++i)
{
RealD Qtmp1 = Qt[i + Nm * k];
RealD Qtmp2 = Qt[i + Nm * (k + 1)];
Qt[i + Nm * k] = c * Qtmp1 - s * Qtmp2;
Qt[i + Nm * (k + 1)] = s * Qtmp1 + c * Qtmp2;
}
}
}
#ifdef USE_LAPACK
#ifdef USE_MKL
#define LAPACK_INT MKL_INT
#else
#define LAPACK_INT long long
#endif
void diagonalize_lapack (DenseVector < RealD > &lmd, DenseVector < RealD > &lme, int N1, // all
int N2, // get
GridBase * grid)
{
const int size = Nm;
LAPACK_INT NN = N1;
double evals_tmp[NN];
double DD[NN];
double EE[NN];
for (int i = 0; i < NN; i++)
for (int j = i - 1; j <= i + 1; j++)
if (j < NN && j >= 0)
{
if (i == j)
DD[i] = lmd[i];
if (i == j)
evals_tmp[i] = lmd[i];
if (j == (i - 1))
EE[j] = lme[j];
}
LAPACK_INT evals_found;
LAPACK_INT lwork =
((18 * NN) >
(1 + 4 * NN + NN * NN) ? (18 * NN) : (1 + 4 * NN + NN * NN));
LAPACK_INT liwork = 3 + NN * 10;
LAPACK_INT iwork[liwork];
double work[lwork];
LAPACK_INT isuppz[2 * NN];
char jobz = 'N'; // calculate evals only
char range = 'I'; // calculate il-th to iu-th evals
// char range = 'A'; // calculate all evals
char uplo = 'U'; // refer to upper half of original matrix
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
int ifail[NN];
LAPACK_INT info;
// int total = QMP_get_number_of_nodes();
// int node = QMP_get_node_number();
// GridBase *grid = evec[0]._grid;
int total = grid->_Nprocessors;
int node = grid->_processor;
int interval = (NN / total) + 1;
double vl = 0.0, vu = 0.0;
LAPACK_INT il = interval * node + 1, iu = interval * (node + 1);
if (iu > NN)
iu = NN;
double tol = 0.0;
if (1)
{
memset (evals_tmp, 0, sizeof (double) * NN);
if (il <= NN)
{
printf ("total=%d node=%d il=%d iu=%d\n", total, node, il, iu);
#ifdef USE_MKL
dstegr (&jobz, &range, &NN,
#else
LAPACK_dstegr (&jobz, &range, &NN,
#endif
(double *) DD, (double *) EE, &vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
&tol, // tolerance
&evals_found, evals_tmp, (double *) NULL, &NN,
isuppz, work, &lwork, iwork, &liwork, &info);
for (int i = iu - 1; i >= il - 1; i--)
{
printf ("node=%d evals_found=%d evals_tmp[%d] = %g\n", node,
evals_found, i - (il - 1), evals_tmp[i - (il - 1)]);
evals_tmp[i] = evals_tmp[i - (il - 1)];
if (il > 1)
evals_tmp[i - (il - 1)] = 0.;
}
}
{
grid->GlobalSumVector (evals_tmp, NN);
}
}
// cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
}
#undef LAPACK_INT
#endif
void diagonalize (DenseVector < RealD > &lmd,
DenseVector < RealD > &lme,
int N2, int N1, GridBase * grid)
{
#ifdef USE_LAPACK
const int check_lapack = 0; // just use lapack if 0, check against lapack if 1
if (!check_lapack)
return diagonalize_lapack (lmd, lme, N2, N1, grid);
// diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
#endif
}
#if 1
static RealD normalise (Field & v)
{
RealD nn = norm2 (v);
nn = sqrt (nn);
v = v * (1.0 / nn);
return nn;
}
void orthogonalize (Field & w, DenseVector < Field > &evec, int k)
{
double t0 = -usecond () / 1e6;
typedef typename Field::scalar_type MyComplex;
MyComplex ip;
if (0)
{
for (int j = 0; j < k; ++j)
{
normalise (evec[j]);
for (int i = 0; i < j; i++)
{
ip = innerProduct (evec[i], evec[j]); // are the evecs normalised? ; this assumes so.
evec[j] = evec[j] - ip * evec[i];
}
}
}
for (int j = 0; j < k; ++j)
{
ip = innerProduct (evec[j], w); // are the evecs normalised? ; this assumes so.
w = w - ip * evec[j];
}
normalise (w);
t0 += usecond () / 1e6;
OrthoTime += t0;
}
void setUnit_Qt (int Nm, DenseVector < RealD > &Qt)
{
for (int i = 0; i < Qt.size (); ++i)
Qt[i] = 0.0;
for (int k = 0; k < Nm; ++k)
Qt[k + k * Nm] = 1.0;
}
void calc (DenseVector < RealD > &eval, const Field & src, int &Nconv)
{
GridBase *grid = src._grid;
// assert(grid == src._grid);
std::
cout << GridLogMessage << " -- Nk = " << Nk << " Np = " << Np << std::
endl;
std::cout << GridLogMessage << " -- Nm = " << Nm << std::endl;
std::cout << GridLogMessage << " -- size of eval = " << eval.
size () << std::endl;
// assert(c.size() && Nm == eval.size());
DenseVector < RealD > lme (Nm);
DenseVector < RealD > lmd (Nm);
Field current (grid);
Field last (grid);
Field next (grid);
Nconv = 0;
RealD beta_k;
// Set initial vector
// (uniform vector) Why not src??
// evec[0] = 1.0;
current = src;
std::cout << GridLogMessage << "norm2(src)= " << norm2 (src) << std::
endl;
normalise (current);
std::
cout << GridLogMessage << "norm2(evec[0])= " << norm2 (current) <<
std::endl;
// Initial Nk steps
OrthoTime = 0.;
double t0 = usecond () / 1e6;
RealD norm; // sqrt norm of last vector
uint64_t iter = 0;
bool initted = false;
std::vector < RealD > low (Nstop * 10);
std::vector < RealD > high (Nstop * 10);
RealD cont = 0.;
while (1) {
cont = 0.;
std::vector < RealD > lme2 (Nm);
std::vector < RealD > lmd2 (Nm);
for (uint64_t k = 0; k < Nm; ++k, iter++) {
step (lmd, lme, last, current, next, iter);
last = current;
current = next;
}
double t1 = usecond () / 1e6;
std::cout << GridLogMessage << "IRL::Initial steps: " << t1 -
t0 << "seconds" << std::endl;
t0 = t1;
std::
cout << GridLogMessage << "IRL::Initial steps:OrthoTime " <<
OrthoTime << "seconds" << std::endl;
// getting eigenvalues
lmd2.resize (iter + 2);
lme2.resize (iter + 2);
for (uint64_t k = 0; k < iter; ++k) {
lmd2[k + 1] = lmd[k];
lme2[k + 2] = lme[k];
}
t1 = usecond () / 1e6;
std::cout << GridLogMessage << "IRL:: copy: " << t1 -
t0 << "seconds" << std::endl;
t0 = t1;
{
int total = grid->_Nprocessors;
int node = grid->_processor;
int interval = (Nstop / total) + 1;
int iu = (iter + 1) - (interval * node + 1);
int il = (iter + 1) - (interval * (node + 1));
std::vector < RealD > eval2 (iter + 3);
RealD eps2;
Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
eps2);
// diagonalize(eval2,lme2,iter,Nk,grid);
RealD diff = 0.;
for (int i = il; i <= iu; i++) {
if (initted)
diff =
fabs (eval2[i] - high[iu-i]) / (fabs (eval2[i]) +
fabs (high[iu-i]));
if (initted && (diff > eresid))
cont = 1.;
if (initted)
printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
high[iu-i], diff);
high[iu-i] = eval2[i];
}
il = (interval * node + 1);
iu = (interval * (node + 1));
Bisection::bisec (lmd2, lme2, iter, il, iu, 1e-16, 1e-10, eval2,
eps2);
for (int i = il; i <= iu; i++) {
if (initted)
diff =
fabs (eval2[i] - low[i]) / (fabs (eval2[i]) +
fabs (low[i]));
if (initted && (diff > eresid))
cont = 1.;
if (initted)
printf ("eval[%d]=%0.14e %0.14e, %0.14e\n", i, eval2[i],
low[i], diff);
low[i] = eval2[i];
}
t1 = usecond () / 1e6;
std::cout << GridLogMessage << "IRL:: diagonalize: " << t1 -
t0 << "seconds" << std::endl;
t0 = t1;
}
for (uint64_t k = 0; k < Nk; ++k) {
// eval[k] = eval2[k];
}
if (initted)
{
grid->GlobalSumVector (&cont, 1);
if (cont < 1.) return;
}
initted = true;
}
}
/**
There is some matrix Q such that for any vector y
Q.e_1 = y and Q is unitary.
**/
template < class T >
static T orthQ (DenseMatrix < T > &Q, DenseVector < T > y)
{
int N = y.size (); //Matrix Size
Fill (Q, 0.0);
T tau;
for (int i = 0; i < N; i++)
{
Q[i][0] = y[i];
}
T sig = conj (y[0]) * y[0];
T tau0 = fabs (sqrt (sig));
for (int j = 1; j < N; j++)
{
sig += conj (y[j]) * y[j];
tau = abs (sqrt (sig));
if (abs (tau0) > 0.0)
{
T gam = conj ((y[j] / tau) / tau0);
for (int k = 0; k <= j - 1; k++)
{
Q[k][j] = -gam * y[k];
}
Q[j][j] = tau0 / tau;
}
else
{
Q[j - 1][j] = 1.0;
}
tau0 = tau;
}
return tau;
}
/**
There is some matrix Q such that for any vector y
Q.e_k = y and Q is unitary.
**/
template < class T >
static T orthU (DenseMatrix < T > &Q, DenseVector < T > y)
{
T tau = orthQ (Q, y);
SL (Q);
return tau;
}
/**
Wind up with a matrix with the first con rows untouched
say con = 2
Q is such that Qdag H Q has {x, x, val, 0, 0, 0, 0, ...} as 1st colum
and the matrix is upper hessenberg
and with f and Q appropriately modidied with Q is the arnoldi factorization
**/
template < class T > static void Lock (DenseMatrix < T > &H, ///Hess mtx
DenseMatrix < T > &Q, ///Lock Transform
T val, ///value to be locked
int con, ///number already locked
RealD small, int dfg, bool herm)
{
//ForceTridiagonal(H);
int M = H.dim;
DenseVector < T > vec;
Resize (vec, M - con);
DenseMatrix < T > AH;
Resize (AH, M - con, M - con);
AH = GetSubMtx (H, con, M, con, M);
DenseMatrix < T > QQ;
Resize (QQ, M - con, M - con);
Unity (Q);
Unity (QQ);
DenseVector < T > evals;
Resize (evals, M - con);
DenseMatrix < T > evecs;
Resize (evecs, M - con, M - con);
Wilkinson < T > (AH, evals, evecs, small);
int k = 0;
RealD cold = abs (val - evals[k]);
for (int i = 1; i < M - con; i++)
{
RealD cnew = abs (val - evals[i]);
if (cnew < cold)
{
k = i;
cold = cnew;
}
}
vec = evecs[k];
ComplexD tau;
orthQ (QQ, vec);
//orthQM(QQ,AH,vec);
AH = Hermitian (QQ) * AH;
AH = AH * QQ;
for (int i = con; i < M; i++)
{
for (int j = con; j < M; j++)
{
Q[i][j] = QQ[i - con][j - con];
H[i][j] = AH[i - con][j - con];
}
}
for (int j = M - 1; j > con + 2; j--)
{
DenseMatrix < T > U;
Resize (U, j - 1 - con, j - 1 - con);
DenseVector < T > z;
Resize (z, j - 1 - con);
T nm = norm (z);
for (int k = con + 0; k < j - 1; k++)
{
z[k - con] = conj (H (j, k + 1));
}
normalise (z);
RealD tmp = 0;
for (int i = 0; i < z.size () - 1; i++)
{
tmp = tmp + abs (z[i]);
}
if (tmp < small / ((RealD) z.size () - 1.0))
{
continue;
}
tau = orthU (U, z);
DenseMatrix < T > Hb;
Resize (Hb, j - 1 - con, M);
for (int a = 0; a < M; a++)
{
for (int b = 0; b < j - 1 - con; b++)
{
T sum = 0;
for (int c = 0; c < j - 1 - con; c++)
{
sum += H[a][con + 1 + c] * U[c][b];
} //sum += H(a,con+1+c)*U(c,b);}
Hb[b][a] = sum;
}
}
for (int k = con + 1; k < j; k++)
{
for (int l = 0; l < M; l++)
{
H[l][k] = Hb[k - 1 - con][l];
}
} //H(Hb[k-1-con][l] , l,k);}}
DenseMatrix < T > Qb;
Resize (Qb, M, M);
for (int a = 0; a < M; a++)
{
for (int b = 0; b < j - 1 - con; b++)
{
T sum = 0;
for (int c = 0; c < j - 1 - con; c++)
{
sum += Q[a][con + 1 + c] * U[c][b];
} //sum += Q(a,con+1+c)*U(c,b);}
Qb[b][a] = sum;
}
}
for (int k = con + 1; k < j; k++)
{
for (int l = 0; l < M; l++)
{
Q[l][k] = Qb[k - 1 - con][l];
}
} //Q(Qb[k-1-con][l] , l,k);}}
DenseMatrix < T > Hc;
Resize (Hc, M, M);
for (int a = 0; a < j - 1 - con; a++)
{
for (int b = 0; b < M; b++)
{
T sum = 0;
for (int c = 0; c < j - 1 - con; c++)
{
sum += conj (U[c][a]) * H[con + 1 + c][b];
} //sum += conj( U(c,a) )*H(con+1+c,b);}
Hc[b][a] = sum;
}
}
for (int k = 0; k < M; k++)
{
for (int l = con + 1; l < j; l++)
{
H[l][k] = Hc[k][l - 1 - con];
}
} //H(Hc[k][l-1-con] , l,k);}}
}
}
#endif
};
}
#endif