1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/qcd/action/pseudofermion/TwoFlavour.h
2018-01-14 22:44:41 +00:00

160 lines
5.2 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavour.h
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_H
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////
// Two flavour pseudofermion action for any dop
////////////////////////////////////////////////////////////////////////
template <class Impl>
class TwoFlavourPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> &FermOp; // the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField Phi; // the pseudo fermion field for this trajectory
public:
/////////////////////////////////////////////////
// Pass in required objects.
/////////////////////////////////////////////////
TwoFlavourPseudoFermionAction(FermionOperator<Impl> &Op,
OperatorFunction<FermionField> &DS,
OperatorFunction<FermionField> &AS)
: FermOp(Op),
DerivativeSolver(DS),
ActionSolver(AS),
Phi(Op.FermionGrid()){};
virtual std::string action_name(){return "TwoFlavourPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
//////////////////////////////////////////////////////////////////////////////////////
// Push the gauge field in to the dops. Assume any BC's and smearing already applied
//////////////////////////////////////////////////////////////////////////////////////
virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) {
// P(phi) = e^{- phi^dag (MdagM)^-1 phi}
// Phi = Mdag eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
// and must multiply by 0.707....
//
// Chroma has this scale factor: two_flavor_monomial_w.h
// IroIro: does not use this scale. It is absorbed by a change of vars
// in the Phi integral, and thus is only an irrelevant prefactor for
// the partition function.
//
RealD scale = std::sqrt(0.5);
FermionField eta(FermOp.FermionGrid());
gaussian(pRNG, eta);
FermOp.ImportGauge(U);
FermOp.Mdag(eta, Phi);
Phi = Phi * scale;
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl>, FermionField> MdagMOp(FermOp);
X = zero;
ActionSolver(MdagMOp, Phi, X);
MdagMOp.Op(X, Y);
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action " << action << std::endl;
return action;
};
//////////////////////////////////////////////////////
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
// = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM
// (Mdag)^-1 phi
//
// = - Ydag dM X - Xdag dMdag Y
//
//
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
FermOp.ImportGauge(U);
FermionField X(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
GaugeField tmp(FermOp.GaugeGrid());
MdagMLinearOperator<FermionOperator<Impl>, FermionField> MdagMOp(FermOp);
X = zero;
DerivativeSolver(MdagMOp, Phi, X); // X = (MdagM)^-1 phi
MdagMOp.Op(X, Y); // Y = M X = (Mdag)^-1 phi
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
FermOp.MDeriv(tmp, Y, X, DaggerNo);
dSdU = tmp;
FermOp.MDeriv(tmp, X, Y, DaggerYes);
dSdU = dSdU + tmp;
// not taking here the traceless antihermitian component
};
};
NAMESPACE_END(Grid);
#endif