1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 10:15:36 +00:00
Grid/extras/Hadrons/Graph.hpp

760 lines
18 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Graph.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Graph_hpp_
#define Hadrons_Graph_hpp_
#include <Grid/Hadrons/Global.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Oriented graph class *
******************************************************************************/
// I/O for edges
template <typename T>
std::ostream & operator<<(std::ostream &out, const std::pair<T, T> &e)
{
out << "\"" << e.first << "\" -> \"" << e.second << "\"";
return out;
}
// main class
template <typename T>
class Graph
{
public:
typedef std::pair<T, T> Edge;
public:
// constructor
Graph(void);
// destructor
virtual ~Graph(void) = default;
// access
void addVertex(const T &value);
void addEdge(const Edge &e);
void addEdge(const T &start, const T &end);
std::vector<T> getVertices(void) const;
void removeVertex(const T &value);
void removeEdge(const Edge &e);
void removeEdge(const T &start, const T &end);
unsigned int size(void) const;
// tests
bool gotValue(const T &value) const;
// graph topological manipulations
std::vector<T> getAdjacentVertices(const T &value) const;
std::vector<T> getChildren(const T &value) const;
std::vector<T> getParents(const T &value) const;
std::vector<T> getRoots(void) const;
std::vector<Graph<T>> getConnectedComponents(void) const;
std::vector<T> topoSort(void);
template <typename Gen>
std::vector<T> topoSort(Gen &gen);
std::vector<std::vector<T>> allTopoSort(void);
// I/O
friend std::ostream & operator<<(std::ostream &out, const Graph<T> &g)
{
out << "{";
for (auto &e: g.edgeSet_)
{
out << e << ", ";
}
if (g.edgeSet_.size() != 0)
{
out << "\b\b";
}
out << "}";
return out;
}
private:
// vertex marking
void mark(const T &value, const bool doMark = true);
void markAll(const bool doMark = true);
void unmark(const T &value);
void unmarkAll(void);
bool isMarked(const T &value) const;
const T * getFirstMarked(const bool isMarked = true) const;
template <typename Gen>
const T * getRandomMarked(const bool isMarked, Gen &gen);
const T * getFirstUnmarked(void) const;
template <typename Gen>
const T * getRandomUnmarked(Gen &gen);
// prune marked/unmarked vertices
void removeMarked(const bool isMarked = true);
void removeUnmarked(void);
// depth-first search marking
void depthFirstSearch(void);
void depthFirstSearch(const T &root);
private:
std::map<T, bool> isMarked_;
std::set<Edge> edgeSet_;
};
// build depedency matrix from topological sorts
template <typename T>
std::map<T, std::map<T, bool>>
makeDependencyMatrix(const std::vector<std::vector<T>> &topSort);
/******************************************************************************
* template implementation *
******************************************************************************
* in all the following V is the number of vertex and E is the number of edge
* in the worst case E = V^2
*/
// constructor /////////////////////////////////////////////////////////////////
template <typename T>
Graph<T>::Graph(void)
{}
// access //////////////////////////////////////////////////////////////////////
// complexity: log(V)
template <typename T>
void Graph<T>::addVertex(const T &value)
{
isMarked_[value] = false;
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::addEdge(const Edge &e)
{
addVertex(e.first);
addVertex(e.second);
edgeSet_.insert(e);
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::addEdge(const T &start, const T &end)
{
addEdge(Edge(start, end));
}
template <typename T>
std::vector<T> Graph<T>::getVertices(void) const
{
std::vector<T> vertex;
for (auto &v: isMarked_)
{
vertex.push_back(v.first);
}
return vertex;
}
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::removeVertex(const T &value)
{
// remove vertex from the mark table
auto vIt = isMarked_.find(value);
if (vIt != isMarked_.end())
{
isMarked_.erase(vIt);
}
else
{
HADRONS_ERROR(Range, "vertex does not exists");
}
// remove all edges containing the vertex
auto pred = [&value](const Edge &e)
{
return ((e.first == value) or (e.second == value));
};
auto eIt = find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
edgeSet_.erase(eIt);
eIt = find_if(edgeSet_.begin(), edgeSet_.end(), pred);
}
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::removeEdge(const Edge &e)
{
auto eIt = edgeSet_.find(e);
if (eIt != edgeSet_.end())
{
edgeSet_.erase(eIt);
}
else
{
HADRONS_ERROR(Range, "edge does not exists");
}
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::removeEdge(const T &start, const T &end)
{
removeEdge(Edge(start, end));
}
// complexity: O(1)
template <typename T>
unsigned int Graph<T>::size(void) const
{
return isMarked_.size();
}
// tests ///////////////////////////////////////////////////////////////////////
// complexity: O(log(V))
template <typename T>
bool Graph<T>::gotValue(const T &value) const
{
auto it = isMarked_.find(value);
if (it == isMarked_.end())
{
return false;
}
else
{
return true;
}
}
// vertex marking //////////////////////////////////////////////////////////////
// complexity: O(log(V))
template <typename T>
void Graph<T>::mark(const T &value, const bool doMark)
{
if (gotValue(value))
{
isMarked_[value] = doMark;
}
else
{
HADRONS_ERROR(Range, "vertex does not exists");
}
}
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::markAll(const bool doMark)
{
for (auto &v: isMarked_)
{
mark(v.first, doMark);
}
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::unmark(const T &value)
{
mark(value, false);
}
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::unmarkAll(void)
{
markAll(false);
}
// complexity: O(log(V))
template <typename T>
bool Graph<T>::isMarked(const T &value) const
{
if (gotValue(value))
{
return isMarked_.at(value);
}
else
{
HADRONS_ERROR(Range, "vertex does not exists");
return false;
}
}
// complexity: O(log(V))
template <typename T>
const T * Graph<T>::getFirstMarked(const bool isMarked) const
{
auto pred = [&isMarked](const std::pair<T, bool> &v)
{
return (v.second == isMarked);
};
auto vIt = std::find_if(isMarked_.begin(), isMarked_.end(), pred);
if (vIt != isMarked_.end())
{
return &(vIt->first);
}
else
{
return nullptr;
}
}
// complexity: O(log(V))
template <typename T>
template <typename Gen>
const T * Graph<T>::getRandomMarked(const bool isMarked, Gen &gen)
{
auto pred = [&isMarked](const std::pair<T, bool> &v)
{
return (v.second == isMarked);
};
std::uniform_int_distribution<unsigned int> dis(0, size() - 1);
auto rIt = isMarked_.begin();
std::advance(rIt, dis(gen));
auto vIt = std::find_if(rIt, isMarked_.end(), pred);
if (vIt != isMarked_.end())
{
return &(vIt->first);
}
else
{
vIt = std::find_if(isMarked_.begin(), rIt, pred);
if (vIt != rIt)
{
return &(vIt->first);
}
else
{
return nullptr;
}
}
}
// complexity: O(log(V))
template <typename T>
const T * Graph<T>::getFirstUnmarked(void) const
{
return getFirstMarked(false);
}
// complexity: O(log(V))
template <typename T>
template <typename Gen>
const T * Graph<T>::getRandomUnmarked(Gen &gen)
{
return getRandomMarked(false, gen);
}
// prune marked/unmarked vertices //////////////////////////////////////////////
// complexity: O(V^2*log(V))
template <typename T>
void Graph<T>::removeMarked(const bool isMarked)
{
auto isMarkedCopy = isMarked_;
for (auto &v: isMarkedCopy)
{
if (v.second == isMarked)
{
removeVertex(v.first);
}
}
}
// complexity: O(V^2*log(V))
template <typename T>
void Graph<T>::removeUnmarked(void)
{
removeMarked(false);
}
// depth-first search marking //////////////////////////////////////////////////
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::depthFirstSearch(void)
{
depthFirstSearch(isMarked_.begin()->first);
}
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::depthFirstSearch(const T &root)
{
std::vector<T> adjacentVertex;
mark(root);
adjacentVertex = getAdjacentVertices(root);
for (auto &v: adjacentVertex)
{
if (!isMarked(v))
{
depthFirstSearch(v);
}
}
}
// graph topological manipulations /////////////////////////////////////////////
// complexity: O(V*log(V))
template <typename T>
std::vector<T> Graph<T>::getAdjacentVertices(const T &value) const
{
std::vector<T> adjacentVertex;
auto pred = [&value](const Edge &e)
{
return ((e.first == value) or (e.second == value));
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
if (eIt->first == value)
{
adjacentVertex.push_back((*eIt).second);
}
else if (eIt->second == value)
{
adjacentVertex.push_back((*eIt).first);
}
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
}
return adjacentVertex;
}
// complexity: O(V*log(V))
template <typename T>
std::vector<T> Graph<T>::getChildren(const T &value) const
{
std::vector<T> child;
auto pred = [&value](const Edge &e)
{
return (e.first == value);
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
child.push_back((*eIt).second);
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
}
return child;
}
// complexity: O(V*log(V))
template <typename T>
std::vector<T> Graph<T>::getParents(const T &value) const
{
std::vector<T> parent;
auto pred = [&value](const Edge &e)
{
return (e.second == value);
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
parent.push_back((*eIt).first);
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
}
return parent;
}
// complexity: O(V^2*log(V))
template <typename T>
std::vector<T> Graph<T>::getRoots(void) const
{
std::vector<T> root;
for (auto &v: isMarked_)
{
auto parent = getParents(v.first);
if (parent.size() == 0)
{
root.push_back(v.first);
}
}
return root;
}
// complexity: O(V^2*log(V))
template <typename T>
std::vector<Graph<T>> Graph<T>::getConnectedComponents(void) const
{
std::vector<Graph<T>> res;
Graph<T> copy(*this);
while (copy.size() > 0)
{
copy.depthFirstSearch();
res.push_back(copy);
res.back().removeUnmarked();
res.back().unmarkAll();
copy.removeMarked();
copy.unmarkAll();
}
return res;
}
// topological sort using a directed DFS algorithm
// complexity: O(V*log(V))
template <typename T>
std::vector<T> Graph<T>::topoSort(void)
{
std::stack<T> buf;
std::vector<T> res;
const T *vPt;
std::map<T, bool> tmpMarked(isMarked_);
// visit function
std::function<void(const T &)> visit = [&](const T &v)
{
if (tmpMarked.at(v))
{
HADRONS_ERROR(Range, "cannot topologically sort a cyclic graph");
}
if (!isMarked(v))
{
std::vector<T> child = getChildren(v);
tmpMarked[v] = true;
for (auto &c: child)
{
visit(c);
}
mark(v);
tmpMarked[v] = false;
buf.push(v);
}
};
// reset temporary marks
for (auto &v: tmpMarked)
{
tmpMarked.at(v.first) = false;
}
// loop on unmarked vertices
unmarkAll();
vPt = getFirstUnmarked();
while (vPt)
{
visit(*vPt);
vPt = getFirstUnmarked();
}
unmarkAll();
// create result vector
while (!buf.empty())
{
res.push_back(buf.top());
buf.pop();
}
return res;
}
// random version of the topological sort
// complexity: O(V*log(V))
template <typename T>
template <typename Gen>
std::vector<T> Graph<T>::topoSort(Gen &gen)
{
std::stack<T> buf;
std::vector<T> res;
const T *vPt;
std::map<T, bool> tmpMarked(isMarked_);
// visit function
std::function<void(const T &)> visit = [&](const T &v)
{
if (tmpMarked.at(v))
{
HADRONS_ERROR(Range, "cannot topologically sort a cyclic graph");
}
if (!isMarked(v))
{
std::vector<T> child = getChildren(v);
tmpMarked[v] = true;
std::shuffle(child.begin(), child.end(), gen);
for (auto &c: child)
{
visit(c);
}
mark(v);
tmpMarked[v] = false;
buf.push(v);
}
};
// reset temporary marks
for (auto &v: tmpMarked)
{
tmpMarked.at(v.first) = false;
}
// loop on unmarked vertices
unmarkAll();
vPt = getRandomUnmarked(gen);
while (vPt)
{
visit(*vPt);
vPt = getRandomUnmarked(gen);
}
unmarkAll();
// create result vector
while (!buf.empty())
{
res.push_back(buf.top());
buf.pop();
}
return res;
}
// generate all possible topological sorts
// Y. L. Varol & D. Rotem, Comput. J. 24(1), pp. 8384, 1981
// http://comjnl.oupjournals.org/cgi/doi/10.1093/comjnl/24.1.83
// complexity: O(V*log(V)) (from the paper, but really ?)
template <typename T>
std::vector<std::vector<T>> Graph<T>::allTopoSort(void)
{
std::vector<std::vector<T>> res;
std::map<T, std::map<T, bool>> iMat;
// create incidence matrix
for (auto &v1: isMarked_)
for (auto &v2: isMarked_)
{
iMat[v1.first][v2.first] = false;
}
for (auto &v: isMarked_)
{
auto cVec = getChildren(v.first);
for (auto &c: cVec)
{
iMat[v.first][c] = true;
}
}
// generate initial topological sort
res.push_back(topoSort());
// generate all other topological sorts by permutation
std::vector<T> p = res[0];
const unsigned int n = size();
std::vector<unsigned int> loc(n);
unsigned int i, k, k1;
T obj_k, obj_k1;
bool isFinal;
for (unsigned int j = 0; j < n; ++j)
{
loc[j] = j;
}
i = 0;
while (i < n-1)
{
k = loc[i];
k1 = k + 1;
obj_k = p[k];
if (k1 >= n)
{
isFinal = true;
obj_k1 = obj_k;
}
else
{
isFinal = false;
obj_k1 = p[k1];
}
if (iMat[res[0][i]][obj_k1] or isFinal)
{
for (unsigned int l = k; l >= i + 1; --l)
{
p[l] = p[l-1];
}
p[i] = obj_k;
loc[i] = i;
i++;
}
else
{
p[k] = obj_k1;
p[k1] = obj_k;
loc[i] = k1;
i = 0;
res.push_back(p);
}
}
return res;
}
// build depedency matrix from topological sorts ///////////////////////////////
// complexity: something like O(V^2*log(V!))
template <typename T>
std::map<T, std::map<T, bool>>
makeDependencyMatrix(const std::vector<std::vector<T>> &topSort)
{
std::map<T, std::map<T, bool>> m;
const std::vector<T> &vList = topSort[0];
for (auto &v1: vList)
for (auto &v2: vList)
{
bool dep = true;
for (auto &t: topSort)
{
auto i1 = std::find(t.begin(), t.end(), v1);
auto i2 = std::find(t.begin(), t.end(), v2);
dep = dep and (i1 - i2 > 0);
if (!dep) break;
}
m[v1][v2] = dep;
}
return m;
}
END_HADRONS_NAMESPACE
#endif // Hadrons_Graph_hpp_