1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/lib/tensors/Tensor_unary.h

153 lines
4.4 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/tensors/Tensor_unary.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_TENSOR_UNARY_H
#define GRID_TENSOR_UNARY_H
namespace Grid {
#define UNARY(func)\
template<class obj> inline auto func(const iScalar<obj> &z) -> iScalar<obj>\
{\
iScalar<obj> ret;\
ret._internal = func( (z._internal));\
return ret;\
}\
template<class obj,int N> inline auto func(const iVector<obj,N> &z) -> iVector<obj,N>\
{\
iVector<obj,N> ret;\
for(int c1=0;c1<N;c1++){\
ret._internal[c1] = func( (z._internal[c1]));\
}\
return ret;\
}\
template<class obj,int N> inline auto func(const iMatrix<obj,N> &z) -> iMatrix<obj,N>\
{\
iMatrix<obj,N> ret;\
for(int c1=0;c1<N;c1++){\
for(int c2=0;c2<N;c2++){\
ret._internal[c1][c2] = func( (z._internal[c1][c2]));\
}}\
return ret;\
}
#define BINARY_RSCALAR(func,scal) \
template<class obj> inline iScalar<obj> func(const iScalar<obj> &z,scal y) \
{\
iScalar<obj> ret;\
ret._internal = func(z._internal,y); \
return ret;\
}\
template<class obj,int N> inline iVector<obj,N> func(const iVector<obj,N> &z,scal y) \
{\
iVector<obj,N> ret;\
for(int c1=0;c1<N;c1++){\
ret._internal[c1] = func(z._internal[c1],y); \
}\
return ret;\
}\
template<class obj,int N> inline iMatrix<obj,N> func(const iMatrix<obj,N> &z, scal y) \
{\
iMatrix<obj,N> ret;\
for(int c1=0;c1<N;c1++){\
for(int c2=0;c2<N;c2++){\
ret._internal[c1][c2] = func(z._internal[c1][c2],y); \
}}\
return ret;\
}
UNARY(sqrt);
UNARY(rsqrt);
UNARY(sin);
UNARY(cos);
UNARY(log);
UNARY(exp);
UNARY(abs);
UNARY(Not);
template<class obj> inline auto toReal(const iScalar<obj> &z) -> typename iScalar<obj>::Realified
{
typename iScalar<obj>::Realified ret;
ret._internal = toReal(z._internal);
return ret;
}
template<class obj,int N> inline auto toReal(const iVector<obj,N> &z) -> typename iVector<obj,N>::Realified
{
typename iVector<obj,N>::Realified ret;
for(int c1=0;c1<N;c1++){
ret._internal[c1] = toReal(z._internal[c1]);
}
return ret;
}
template<class obj,int N> inline auto toReal(const iMatrix<obj,N> &z) -> typename iMatrix<obj,N>::Realified
{
typename iMatrix<obj,N>::Realified ret;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal[c1][c2] = toReal(z._internal[c1][c2]);
}}
return ret;
}
template<class obj> inline auto toComplex(const iScalar<obj> &z) -> typename iScalar<obj>::Complexified
{
typename iScalar<obj>::Complexified ret;
ret._internal = toComplex(z._internal);
return ret;
}
template<class obj,int N> inline auto toComplex(const iVector<obj,N> &z) -> typename iVector<obj,N>::Complexified
{
typename iVector<obj,N>::Complexified ret;
for(int c1=0;c1<N;c1++){
ret._internal[c1] = toComplex(z._internal[c1]);
}
return ret;
}
template<class obj,int N> inline auto toComplex(const iMatrix<obj,N> &z) -> typename iMatrix<obj,N>::Complexified
{
typename iMatrix<obj,N>::Complexified ret;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal[c1][c2] = toComplex(z._internal[c1][c2]);
}}
return ret;
}
BINARY_RSCALAR(div,Integer);
BINARY_RSCALAR(mod,Integer);
BINARY_RSCALAR(pow,RealD);
#undef UNARY
#undef BINARY_RSCALAR
}
#endif