1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00
Grid/HMC/Mobius2p1f_DD_RHMC_96I.cc
2022-11-02 19:50:32 -04:00

423 lines
15 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_EODWFRatio.cc
Copyright (C) 2015-2016
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// Typedefs to simplify notation
typedef WilsonImplR FermionImplPolicy;
typedef MobiusFermionD FermionAction;
typedef typename FermionAction::FermionField FermionField;
typedef Grid::XmlReader Serialiser;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
IntegratorParameters MD;
// typedef GenericHMCRunner<LeapFrog> HMCWrapper;
// MD.name = std::string("Leap Frog");
// typedef GenericHMCRunner<ForceGradient> HMCWrapper;
// MD.name = std::string("Force Gradient");
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper;
MD.name = std::string("MinimumNorm2");
MD.MDsteps = 6;
MD.trajL = 1.0;
HMCparameters HMCparams;
HMCparams.StartTrajectory = 1077;
HMCparams.Trajectories = 1;
HMCparams.NoMetropolisUntil= 0;
// "[HotStart, ColdStart, TepidStart, CheckpointStart]\n";
// HMCparams.StartingType =std::string("ColdStart");
HMCparams.StartingType =std::string("CheckpointStart");
HMCparams.MD = MD;
HMCWrapper TheHMC(HMCparams);
// Grid from the command line arguments --grid and --mpi
TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_DDHMC_lat";
CPparams.rng_prefix = "ckpoint_DDHMC_rng";
CPparams.saveInterval = 1;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
const int Ls = 12;
RealD M5 = 1.8;
RealD b = 1.5;
RealD c = 0.5;
// Real beta = 2.31;
// Real light_mass = 5.4e-4;
Real beta = 2.13;
Real light_mass = 7.8e-4;
Real strange_mass = 0.02132;
Real pv_mass = 1.0;
// std::vector<Real> hasenbusch({ light_mass, 3.8e-3, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass });
std::vector<Real> hasenbusch({ light_mass, 0.0145, 0.045, 0.108, 0.25, 0.51 , pv_mass });
// FIXME:
// Same in MC and MD
// Need to mix precision too
OneFlavourRationalParams SFRp; // Strange
SFRp.lo = 4.0e-3;
SFRp.hi = 90.0;
SFRp.MaxIter = 60000;
SFRp.tolerance= 1.0e-8;
SFRp.mdtolerance= 1.0e-4;
SFRp.degree = 12;
SFRp.precision= 50;
SFRp.BoundsCheckFreq=0;
OneFlavourRationalParams OFRp; // Up/down
OFRp.lo = 2.0e-5;
OFRp.hi = 90.0;
OFRp.MaxIter = 60000;
OFRp.tolerance= 1.0e-7;
OFRp.mdtolerance= 1.0e-4;
// OFRp.degree = 20; converges
// OFRp.degree = 16;
OFRp.degree = 12;
OFRp.precision= 80;
OFRp.BoundsCheckFreq=0;
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
////////////////////////////////////////////////////////////////
// Domain decomposed
////////////////////////////////////////////////////////////////
Coordinate latt4 = GridPtr->GlobalDimensions();
Coordinate mpi = GridPtr->ProcessorGrid();
Coordinate shm;
GlobalSharedMemory::GetShmDims(mpi,shm);
Coordinate CommDim(Nd);
for(int d=0;d<Nd;d++) CommDim[d]= (mpi[d]/shm[d])>1 ? 1 : 0;
Coordinate NonDirichlet(Nd+1,0);
Coordinate Dirichlet(Nd+1,0);
Dirichlet[1] = CommDim[0]*latt4[0]/mpi[0] * shm[0];
Dirichlet[2] = CommDim[1]*latt4[1]/mpi[1] * shm[1];
Dirichlet[3] = CommDim[2]*latt4[2]/mpi[2] * shm[2];
Dirichlet[4] = CommDim[3]*latt4[3]/mpi[3] * shm[3];
Coordinate Block4(Nd);
// Block4[0] = Dirichlet[1];
// Block4[1] = Dirichlet[2];
// Block4[2] = Dirichlet[3];
Block4[0] = 0;
Block4[1] = 0;
Block4[2] = 0;
Block4[3] = Dirichlet[4];
int Width=3;
TheHMC.Resources.SetMomentumFilter(new DDHMCFilter<WilsonImplR::Field>(Block4,Width));
//////////////////////////
// Fermion Grid
//////////////////////////
auto FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,GridPtr);
auto FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,GridPtr);
IwasakiGaugeActionR GaugeAction(beta);
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
std::cout << GridLogMessage << " Running the HMC "<< std::endl;
TheHMC.ReadCommandLine(argc,argv); // params on CML or from param file
TheHMC.initializeGaugeFieldAndRNGs(U);
// These lines are unecessary if BC are all periodic
std::vector<Complex> boundary = {1,1,1,-1};
FermionAction::ImplParams Params(boundary);
Params.dirichlet=NonDirichlet;
FermionAction::ImplParams ParamsDir(boundary);
ParamsDir.dirichlet=Dirichlet;
// double StoppingCondition = 1e-14;
// double MDStoppingCondition = 1e-9;
double StoppingCondition = 1e-8;
double MDStoppingCondition = 1e-6;
double MaxCGIterations = 300000;
ConjugateGradient<FermionField> CG(StoppingCondition,MaxCGIterations);
ConjugateGradient<FermionField> MDCG(MDStoppingCondition,MaxCGIterations);
////////////////////////////////////
// Collect actions
////////////////////////////////////
ActionLevel<HMCWrapper::Field> Level1(1);
ActionLevel<HMCWrapper::Field> Level2(4);
ActionLevel<HMCWrapper::Field> Level3(8);
////////////////////////////////////
// Strange action
////////////////////////////////////
FermionAction StrangeOp (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, Params);
FermionAction StrangePauliVillarsOp(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, Params);
FermionAction StrangeOpDir (U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,strange_mass,M5,b,c, ParamsDir);
FermionAction StrangePauliVillarsOpDir(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,pv_mass, M5,b,c, ParamsDir);
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionBdy(StrangeOpDir,StrangeOp,SFRp);
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionLocal(StrangePauliVillarsOpDir,StrangeOpDir,SFRp);
OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> StrangePseudoFermionPVBdy(StrangePauliVillarsOp,StrangePauliVillarsOpDir,SFRp);
Level1.push_back(&StrangePseudoFermionBdy);
Level2.push_back(&StrangePseudoFermionLocal);
Level1.push_back(&StrangePseudoFermionPVBdy);
////////////////////////////////////
// up down action
////////////////////////////////////
std::vector<Real> light_den;
std::vector<Real> light_num;
std::vector<int> dirichlet_den;
std::vector<int> dirichlet_num;
int n_hasenbusch = hasenbusch.size();
light_den.push_back(light_mass); dirichlet_den.push_back(0);
for(int h=0;h<n_hasenbusch;h++){
light_den.push_back(hasenbusch[h]); dirichlet_den.push_back(1);
}
for(int h=0;h<n_hasenbusch;h++){
light_num.push_back(hasenbusch[h]); dirichlet_num.push_back(1);
}
light_num.push_back(pv_mass); dirichlet_num.push_back(0);
std::vector<FermionAction *> Numerators;
std::vector<FermionAction *> Denominators;
std::vector<TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy> *> Quotients;
std::vector<OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> *> Bdys;
for(int h=0;h<n_hasenbusch+1;h++){
std::cout << GridLogMessage
<< " 2f quotient Action ";
std::cout << "det D("<<light_den[h]<<")";
if ( dirichlet_den[h] ) std::cout << "^dirichlet ";
std::cout << "/ det D("<<light_num[h]<<")";
if ( dirichlet_num[h] ) std::cout << "^dirichlet ";
std::cout << std::endl;
FermionAction::ImplParams ParamsNum(boundary);
FermionAction::ImplParams ParamsDen(boundary);
if ( dirichlet_num[h]==1) ParamsNum.dirichlet = Dirichlet;
else ParamsNum.dirichlet = NonDirichlet;
Numerators.push_back (new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_num[h],M5,b,c, ParamsNum));
if ( dirichlet_den[h]==1) ParamsDen.dirichlet = Dirichlet;
else ParamsDen.dirichlet = NonDirichlet;
Denominators.push_back(new FermionAction(U,*FGrid,*FrbGrid,*GridPtr,*GridRBPtr,light_den[h],M5,b,c, ParamsDen));
if(h!=0) {
Quotients.push_back (new TwoFlavourEvenOddRatioPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],MDCG,CG));
} else {
Bdys.push_back( new OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],OFRp));
Bdys.push_back( new OneFlavourEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy>(*Numerators[h],*Denominators[h],OFRp));
}
}
int nquo=Quotients.size();
Level1.push_back(Bdys[0]);
Level1.push_back(Bdys[1]);
for(int h=0;h<nquo-1;h++){
Level2.push_back(Quotients[h]);
}
Level2.push_back(Quotients[nquo-1]);
/////////////////////////////////////////////////////////////
// Gauge action
/////////////////////////////////////////////////////////////
Level3.push_back(&GaugeAction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
TheHMC.TheAction.push_back(Level3);
std::cout << GridLogMessage << " Action complete "<< std::endl;
/////////////////////////////////////////////////////////////
if(1){
// TODO:
// i) Break high bound, how rapidly does it break? Tune this test.
// ii) Break low bound, how rapidly?
// iii) Run lanczos
// iv) Have CG return spectral range estimate
FermionField vec(StrangeOp.FermionRedBlackGrid());
FermionField res(StrangeOp.FermionRedBlackGrid());
vec = 1; // Fill with any old junk
std::cout << "Bounds check on strange operator mass "<< StrangeOp.Mass()<<std::endl;
SchurDifferentiableOperator<FermionImplPolicy> SdagS(StrangeOp);
HighBoundCheck(SdagS,vec,SFRp.hi);
ChebyBoundsCheck(SdagS,vec,SFRp.lo,SFRp.hi);
std::cout << "Strange inversion"<<std::endl;
res=Zero();
// MDCG(SdagS,vec,res);
vec = 1; // Fill with any old junk
std::cout << "Bounds check on light quark operator mass "<< Denominators[0]->Mass() <<std::endl;
SchurDifferentiableOperator<FermionImplPolicy> UdagU(*Denominators[0]);
HighBoundCheck(UdagU,vec,OFRp.hi);
ChebyBoundsCheck(UdagU,vec,OFRp.lo,OFRp.hi);
std::cout << "light inversion"<<std::endl;
res=Zero();
// MDCG(UdagU,vec,res);
vec = 1; // Fill with any old junk
std::cout << "Bounds check on strange dirichlet operator mass "<< StrangeOpDir.Mass()<<std::endl;
SchurDifferentiableOperator<FermionImplPolicy> SddagSd(StrangeOpDir);
HighBoundCheck(SddagSd,vec,SFRp.hi);
ChebyBoundsCheck(SddagSd,vec,SFRp.lo,SFRp.hi);
std::cout << "strange dirichlet inversion"<<std::endl;
res=Zero();
// MDCG(SddagSd,vec,res);
vec = 1; // Fill with any old junk
std::cout << "Bounds check on light dirichlet operator mass "<< Numerators[0]->Mass()<<std::endl;
SchurDifferentiableOperator<FermionImplPolicy> UddagUd(*Numerators[0]);
HighBoundCheck(UddagUd,vec,OFRp.hi);
ChebyBoundsCheck(UddagUd,vec,OFRp.lo,OFRp.hi);
std::cout << "light dirichlet inversion"<<std::endl;
res=Zero();
//MDCG(UddagUd,vec,res);
auto grid4= GridPtr;
auto rbgrid4= GridRBPtr;
auto rbgrid = StrangeOp.FermionRedBlackGrid();
auto grid = StrangeOp.FermionGrid();
if(1){
const int Nstop = 5;
const int Nk = 20;
const int Np = 20;
const int Nm = Nk+Np;
const int MaxIt= 10000;
int Nconv;
RealD resid = 1.0e-5;
if(1)
{
int order = 501;
RealD bound = 5.0e-4;
std::cout << GridLogMessage << " Lanczos for dirichlet bound " << bound<<" order "<< order<<std::endl;
Chebyshev<FermionField> Cheby(bound,90.,order);
FunctionHermOp<FermionField> OpCheby(Cheby,UddagUd);
PlainHermOp<FermionField> Op (UddagUd);
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt);
std::vector<RealD> eval(Nm);
std::vector<FermionField> evec(Nm,rbgrid);
FermionField src(rbgrid);src = 1.0;
IRL.calc(eval,evec,src,Nconv);
FermionField tmp(rbgrid);
FermionField ftmp(grid);
FermionField ftmp4(grid4);
for(int ev=0;ev<evec.size();ev++){
Gamma GT(Gamma::Algebra::GammaT);
std::cout << " evec " << ev << std::endl;
tmp = evec[ev] + GT*evec[ev];
DumpSliceNorm(" 1+gammaT ",tmp,Nd);
tmp = evec[ev] - GT*evec[ev];
DumpSliceNorm(" 1-gammaT ",tmp,Nd);
}
for(int e=0;e<10;e++){
std::cout << " Dirichlet evec "<<e<<std::endl;
tmp = evec[e];
for(int s=0;s<Ls;s++){
ftmp=Zero();
setCheckerboard(ftmp,tmp);
ExtractSlice(ftmp4,ftmp,s,0);
std::cout << "s-slice "<<s<< " evec[0] " << std::endl;
DumpSliceNorm(" s-slice ",ftmp4,Nd-1);
}
}
}
if(1)
{
int order = 2001;
RealD bound = 6.0e-5;
std::cout << GridLogMessage << " Lanczos for full operator bound " << bound<<" order "<< order<<std::endl;
Chebyshev<FermionField> Cheby(bound,90.,order);
FunctionHermOp<FermionField> OpCheby(Cheby,UdagU);
PlainHermOp<FermionField> Op (UdagU);
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt);
std::vector<RealD> eval(Nm);
std::vector<FermionField> evec(Nm,rbgrid);
FermionField src(rbgrid); src = 1.0;
IRL.calc(eval,evec,src,Nconv);
FermionField tmp(rbgrid);
FermionField ftmp(grid);
FermionField ftmp4(grid4);
for(int e=0;e<evec.size();e++){
std::cout << " Full evec "<<e<<std::endl;
tmp = evec[e];
for(int s=0;s<Ls;s++){
ftmp=Zero();
setCheckerboard(ftmp,tmp);
ExtractSlice(ftmp4,ftmp,s,0);
std::cout << "s-slice "<<s<< " evec[0] " << std::endl;
DumpSliceNorm(" s-slice ",ftmp4,Nd-1);
}
}
}
Grid_finalize();
std::cout << " All done "<<std::endl;
exit(EXIT_SUCCESS);
}
}
TheHMC.Run(); // no smearing
Grid_finalize();
} // main