mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
454 lines
11 KiB
C++
454 lines
11 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/algorithms/iterative/Matrix.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef MATRIX_H
|
|
#define MATRIX_H
|
|
|
|
#include <cstdlib>
|
|
#include <string>
|
|
#include <cmath>
|
|
#include <vector>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <complex>
|
|
#include <typeinfo>
|
|
#include <Grid/Grid.h>
|
|
|
|
|
|
/** Sign function **/
|
|
template <class T> T sign(T p){return ( p/abs(p) );}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
///////////////////// Hijack STL containers for our wicked means /////////////////////////////////////////
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
template<class T> using Vector = Vector<T>;
|
|
template<class T> using Matrix = Vector<Vector<T> >;
|
|
|
|
template<class T> void Resize(Vector<T > & vec, int N) { vec.resize(N); }
|
|
|
|
template<class T> void Resize(Matrix<T > & mat, int N, int M) {
|
|
mat.resize(N);
|
|
for(int i=0;i<N;i++){
|
|
mat[i].resize(M);
|
|
}
|
|
}
|
|
template<class T> void Size(Vector<T> & vec, int &N)
|
|
{
|
|
N= vec.size();
|
|
}
|
|
template<class T> void Size(Matrix<T> & mat, int &N,int &M)
|
|
{
|
|
N= mat.size();
|
|
M= mat[0].size();
|
|
}
|
|
template<class T> void SizeSquare(Matrix<T> & mat, int &N)
|
|
{
|
|
int M; Size(mat,N,M);
|
|
assert(N==M);
|
|
}
|
|
template<class T> void SizeSame(Matrix<T> & mat1,Matrix<T> &mat2, int &N1,int &M1)
|
|
{
|
|
int N2,M2;
|
|
Size(mat1,N1,M1);
|
|
Size(mat2,N2,M2);
|
|
assert(N1==N2);
|
|
assert(M1==M2);
|
|
}
|
|
|
|
//*****************************************
|
|
//* (Complex) Vector operations *
|
|
//*****************************************
|
|
|
|
/**Conj of a Vector **/
|
|
template <class T> Vector<T> conj(Vector<T> p){
|
|
Vector<T> q(p.size());
|
|
for(int i=0;i<p.size();i++){q[i] = conj(p[i]);}
|
|
return q;
|
|
}
|
|
|
|
/** Norm of a Vector**/
|
|
template <class T> T norm(Vector<T> p){
|
|
T sum = 0;
|
|
for(int i=0;i<p.size();i++){sum = sum + p[i]*conj(p[i]);}
|
|
return abs(sqrt(sum));
|
|
}
|
|
|
|
/** Norm squared of a Vector **/
|
|
template <class T> T norm2(Vector<T> p){
|
|
T sum = 0;
|
|
for(int i=0;i<p.size();i++){sum = sum + p[i]*conj(p[i]);}
|
|
return abs((sum));
|
|
}
|
|
|
|
/** Sum elements of a Vector **/
|
|
template <class T> T trace(Vector<T> p){
|
|
T sum = 0;
|
|
for(int i=0;i<p.size();i++){sum = sum + p[i];}
|
|
return sum;
|
|
}
|
|
|
|
/** Fill a Vector with constant c **/
|
|
template <class T> void Fill(Vector<T> &p, T c){
|
|
for(int i=0;i<p.size();i++){p[i] = c;}
|
|
}
|
|
/** Normalize a Vector **/
|
|
template <class T> void normalize(Vector<T> &p){
|
|
T m = norm(p);
|
|
if( abs(m) > 0.0) for(int i=0;i<p.size();i++){p[i] /= m;}
|
|
}
|
|
/** Vector by scalar **/
|
|
template <class T, class U> Vector<T> times(Vector<T> p, U s){
|
|
for(int i=0;i<p.size();i++){p[i] *= s;}
|
|
return p;
|
|
}
|
|
template <class T, class U> Vector<T> times(U s, Vector<T> p){
|
|
for(int i=0;i<p.size();i++){p[i] *= s;}
|
|
return p;
|
|
}
|
|
/** inner product of a and b = conj(a) . b **/
|
|
template <class T> T inner(Vector<T> a, Vector<T> b){
|
|
T m = 0.;
|
|
for(int i=0;i<a.size();i++){m = m + conj(a[i])*b[i];}
|
|
return m;
|
|
}
|
|
/** sum of a and b = a + b **/
|
|
template <class T> Vector<T> add(Vector<T> a, Vector<T> b){
|
|
Vector<T> m(a.size());
|
|
for(int i=0;i<a.size();i++){m[i] = a[i] + b[i];}
|
|
return m;
|
|
}
|
|
/** sum of a and b = a - b **/
|
|
template <class T> Vector<T> sub(Vector<T> a, Vector<T> b){
|
|
Vector<T> m(a.size());
|
|
for(int i=0;i<a.size();i++){m[i] = a[i] - b[i];}
|
|
return m;
|
|
}
|
|
|
|
/**
|
|
*********************************
|
|
* Matrices *
|
|
*********************************
|
|
**/
|
|
|
|
template<class T> void Fill(Matrix<T> & mat, T&val) {
|
|
int N,M;
|
|
Size(mat,N,M);
|
|
for(int i=0;i<N;i++){
|
|
for(int j=0;j<M;j++){
|
|
mat[i][j] = val;
|
|
}}
|
|
}
|
|
|
|
/** Transpose of a matrix **/
|
|
Matrix<T> Transpose(Matrix<T> & mat){
|
|
int N,M;
|
|
Size(mat,N,M);
|
|
Matrix C; Resize(C,M,N);
|
|
for(int i=0;i<M;i++){
|
|
for(int j=0;j<N;j++){
|
|
C[i][j] = mat[j][i];
|
|
}}
|
|
return C;
|
|
}
|
|
/** Set Matrix to unit matrix **/
|
|
template<class T> void Unity(Matrix<T> &mat){
|
|
int N; SizeSquare(mat,N);
|
|
for(int i=0;i<N;i++){
|
|
for(int j=0;j<N;j++){
|
|
if ( i==j ) A[i][j] = 1;
|
|
else A[i][j] = 0;
|
|
}
|
|
}
|
|
}
|
|
/** Add C * I to matrix **/
|
|
template<class T>
|
|
void PlusUnit(Matrix<T> & A,T c){
|
|
int dim; SizeSquare(A,dim);
|
|
for(int i=0;i<dim;i++){A[i][i] = A[i][i] + c;}
|
|
}
|
|
|
|
/** return the Hermitian conjugate of matrix **/
|
|
Matrix<T> HermitianConj(Matrix<T> &mat){
|
|
|
|
int dim; SizeSquare(mat,dim);
|
|
|
|
Matrix<T> C; Resize(C,dim,dim);
|
|
|
|
for(int i=0;i<dim;i++){
|
|
for(int j=0;j<dim;j++){
|
|
C[i][j] = conj(mat[j][i]);
|
|
}
|
|
}
|
|
return C;
|
|
}
|
|
|
|
/** return diagonal entries as a Vector **/
|
|
Vector<T> diag(Matrix<T> &A)
|
|
{
|
|
int dim; SizeSquare(A,dim);
|
|
Vector<T> d; Resize(d,dim);
|
|
|
|
for(int i=0;i<dim;i++){
|
|
d[i] = A[i][i];
|
|
}
|
|
return d;
|
|
}
|
|
|
|
/** Left multiply by a Vector **/
|
|
Vector<T> operator *(Vector<T> &B,Matrix<T> &A)
|
|
{
|
|
int K,M,N;
|
|
Size(B,K);
|
|
Size(A,M,N);
|
|
assert(K==M);
|
|
|
|
Vector<T> C; Resize(C,N);
|
|
|
|
for(int j=0;j<N;j++){
|
|
T sum = 0.0;
|
|
for(int i=0;i<M;i++){
|
|
sum += B[i] * A[i][j];
|
|
}
|
|
C[j] = sum;
|
|
}
|
|
return C;
|
|
}
|
|
|
|
/** return 1/diagonal entries as a Vector **/
|
|
Vector<T> inv_diag(Matrix<T> & A){
|
|
int dim; SizeSquare(A,dim);
|
|
Vector<T> d; Resize(d,dim);
|
|
for(int i=0;i<dim;i++){
|
|
d[i] = 1.0/A[i][i];
|
|
}
|
|
return d;
|
|
}
|
|
/** Matrix Addition **/
|
|
inline Matrix<T> operator + (Matrix<T> &A,Matrix<T> &B)
|
|
{
|
|
int N,M ; SizeSame(A,B,N,M);
|
|
Matrix C; Resize(C,N,M);
|
|
for(int i=0;i<N;i++){
|
|
for(int j=0;j<M;j++){
|
|
C[i][j] = A[i][j] + B[i][j];
|
|
}
|
|
}
|
|
return C;
|
|
}
|
|
/** Matrix Subtraction **/
|
|
inline Matrix<T> operator- (Matrix<T> & A,Matrix<T> &B){
|
|
int N,M ; SizeSame(A,B,N,M);
|
|
Matrix C; Resize(C,N,M);
|
|
for(int i=0;i<N;i++){
|
|
for(int j=0;j<M;j++){
|
|
C[i][j] = A[i][j] - B[i][j];
|
|
}}
|
|
return C;
|
|
}
|
|
|
|
/** Matrix scalar multiplication **/
|
|
inline Matrix<T> operator* (Matrix<T> & A,T c){
|
|
int N,M; Size(A,N,M);
|
|
Matrix C; Resize(C,N,M);
|
|
for(int i=0;i<N;i++){
|
|
for(int j=0;j<M;j++){
|
|
C[i][j] = A[i][j]*c;
|
|
}}
|
|
return C;
|
|
}
|
|
/** Matrix Matrix multiplication **/
|
|
inline Matrix<T> operator* (Matrix<T> &A,Matrix<T> &B){
|
|
int K,L,N,M;
|
|
Size(A,K,L);
|
|
Size(B,N,M); assert(L==N);
|
|
Matrix C; Resize(C,K,M);
|
|
|
|
for(int i=0;i<K;i++){
|
|
for(int j=0;j<M;j++){
|
|
T sum = 0.0;
|
|
for(int k=0;k<N;k++) sum += A[i][k]*B[k][j];
|
|
C[i][j] =sum;
|
|
}
|
|
}
|
|
return C;
|
|
}
|
|
/** Matrix Vector multiplication **/
|
|
inline Vector<T> operator* (Matrix<T> &A,Vector<T> &B){
|
|
int M,N,K;
|
|
Size(A,N,M);
|
|
Size(B,K); assert(K==M);
|
|
Vector<T> C; Resize(C,N);
|
|
for(int i=0;i<N;i++){
|
|
T sum = 0.0;
|
|
for(int j=0;j<M;j++) sum += A[i][j]*B[j];
|
|
C[i] = sum;
|
|
}
|
|
return C;
|
|
}
|
|
|
|
/** Some version of Matrix norm **/
|
|
/*
|
|
inline T Norm(){ // this is not a usual L2 norm
|
|
T norm = 0;
|
|
for(int i=0;i<dim;i++){
|
|
for(int j=0;j<dim;j++){
|
|
norm += abs(A[i][j]);
|
|
}}
|
|
return norm;
|
|
}
|
|
*/
|
|
|
|
/** Some version of Matrix norm **/
|
|
template<class T> T LargestDiag(Matrix<T> &A)
|
|
{
|
|
int dim ; SizeSquare(A,dim);
|
|
|
|
T ld = abs(A[0][0]);
|
|
for(int i=1;i<dim;i++){
|
|
T cf = abs(A[i][i]);
|
|
if(abs(cf) > abs(ld) ){ld = cf;}
|
|
}
|
|
return ld;
|
|
}
|
|
|
|
/** Look for entries on the leading subdiagonal that are smaller than 'small' **/
|
|
template <class T,class U> int Chop_subdiag(Matrix<T> &A,T norm, int offset, U small)
|
|
{
|
|
int dim; SizeSquare(A,dim);
|
|
for(int l = dim - 1 - offset; l >= 1; l--) {
|
|
if((U)abs(A[l][l - 1]) < (U)small) {
|
|
A[l][l-1]=(U)0.0;
|
|
return l;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Look for entries on the leading subdiagonal that are smaller than 'small' **/
|
|
template <class T,class U> int Chop_symm_subdiag(Matrix<T> & A,T norm, int offset, U small)
|
|
{
|
|
int dim; SizeSquare(A,dim);
|
|
for(int l = dim - 1 - offset; l >= 1; l--) {
|
|
if((U)abs(A[l][l - 1]) < (U)small) {
|
|
A[l][l - 1] = (U)0.0;
|
|
A[l - 1][l] = (U)0.0;
|
|
return l;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
/**Assign a submatrix to a larger one**/
|
|
template<class T>
|
|
void AssignSubMtx(Matrix<T> & A,int row_st, int row_end, int col_st, int col_end, Matrix<T> &S)
|
|
{
|
|
for(int i = row_st; i<row_end; i++){
|
|
for(int j = col_st; j<col_end; j++){
|
|
A[i][j] = S[i - row_st][j - col_st];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**Get a square submatrix**/
|
|
template <class T>
|
|
Matrix<T> GetSubMtx(Matrix<T> &A,int row_st, int row_end, int col_st, int col_end)
|
|
{
|
|
Matrix<T> H; Resize(row_end - row_st,col_end-col_st);
|
|
|
|
for(int i = row_st; i<row_end; i++){
|
|
for(int j = col_st; j<col_end; j++){
|
|
H[i-row_st][j-col_st]=A[i][j];
|
|
}}
|
|
return H;
|
|
}
|
|
|
|
/**Assign a submatrix to a larger one NB remember Vector Vectors are transposes of the matricies they represent**/
|
|
template<class T>
|
|
void AssignSubMtx(Matrix<T> & A,int row_st, int row_end, int col_st, int col_end, Matrix<T> &S)
|
|
{
|
|
for(int i = row_st; i<row_end; i++){
|
|
for(int j = col_st; j<col_end; j++){
|
|
A[i][j] = S[i - row_st][j - col_st];
|
|
}}
|
|
}
|
|
|
|
/** compute b_i A_ij b_j **/ // surprised no Conj
|
|
template<class T> T proj(Matrix<T> A, Vector<T> B){
|
|
int dim; SizeSquare(A,dim);
|
|
int dimB; Size(B,dimB);
|
|
assert(dimB==dim);
|
|
T C = 0;
|
|
for(int i=0;i<dim;i++){
|
|
T sum = 0.0;
|
|
for(int j=0;j<dim;j++){
|
|
sum += A[i][j]*B[j];
|
|
}
|
|
C += B[i]*sum; // No conj?
|
|
}
|
|
return C;
|
|
}
|
|
|
|
|
|
/*
|
|
*************************************************************
|
|
*
|
|
* Matrix Vector products
|
|
*
|
|
*************************************************************
|
|
*/
|
|
// Instead make a linop and call my CG;
|
|
|
|
/// q -> q Q
|
|
template <class T,class Fermion> void times(Vector<Fermion> &q, Matrix<T> &Q)
|
|
{
|
|
int M; SizeSquare(Q,M);
|
|
int N; Size(q,N);
|
|
assert(M==N);
|
|
|
|
times(q,Q,N);
|
|
}
|
|
|
|
/// q -> q Q
|
|
template <class T> void times(multi1d<LatticeFermion> &q, Matrix<T> &Q, int N)
|
|
{
|
|
GridBase *grid = q[0]._grid;
|
|
int M; SizeSquare(Q,M);
|
|
int K; Size(q,K);
|
|
assert(N<M);
|
|
assert(N<K);
|
|
Vector<Fermion> S(N,grid );
|
|
for(int j=0;j<N;j++){
|
|
S[j] = zero;
|
|
for(int k=0;k<N;k++){
|
|
S[j] = S[j] + q[k]* Q[k][j];
|
|
}
|
|
}
|
|
for(int j=0;j<q.size();j++){
|
|
q[j] = S[j];
|
|
}
|
|
}
|
|
#endif
|