1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 17:25:37 +01:00
Grid/Hadrons/Modules/MContraction/A2AMesonField.hpp

487 lines
17 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/A2AMesonField.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_A2AMesonField_hpp_
#define Hadrons_MContraction_A2AMesonField_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/A2AVectors.hpp>
#include <Hadrons/Modules/MSolver/A2AVectors.hpp>
#include <Hadrons/Modules/MContraction/A2AMesonFieldKernels.hpp>
#define MF_PARALLEL_IO
#ifndef MF_IO_TYPE
#define MF_IO_TYPE ComplexF
#endif
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* All-to-all meson field creation *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class A2AMesonFieldPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMesonFieldPar,
int, cacheBlock,
int, block,
std::string, v,
std::string, w,
std::string, output,
std::string, gammas,
std::vector<std::string>, mom);
};
template <typename FImpl>
class TA2AMesonField : public Module<A2AMesonFieldPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
SOLVER_TYPE_ALIASES(FImpl,);
typedef Eigen::TensorMap<Eigen::Tensor<Complex, 5, Eigen::RowMajor>> MesonField;
typedef Eigen::TensorMap<Eigen::Tensor<MF_IO_TYPE, 5, Eigen::RowMajor>> MesonFieldIo;
public:
// constructor
TA2AMesonField(const std::string name);
// destructor
virtual ~TA2AMesonField(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
// IO
std::string ioname(unsigned int m, unsigned int g) const;
std::string filename(unsigned int m, unsigned int g) const;
void initFile(unsigned int m, unsigned int g);
void saveBlock(const MesonFieldIo &mf,
unsigned int m, unsigned int g,
unsigned int i, unsigned int j);
private:
bool hasPhase_{false};
std::string momphName_;
std::vector<Gamma::Algebra> gamma_;
std::vector<std::vector<Real>> mom_;
std::vector<std::pair<unsigned int, unsigned int>> nodeFile_;
};
MODULE_REGISTER(A2AMesonField, ARG(TA2AMesonField<FIMPL>), MContraction);
MODULE_REGISTER(ZA2AMesonField, ARG(TA2AMesonField<ZFIMPL>), MContraction);
/******************************************************************************
* TA2AMesonField implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AMesonField<FImpl>::TA2AMesonField(const std::string name)
: Module<A2AMesonFieldPar>(name)
, momphName_(name + "_momph")
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2AMesonField<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().v, par().w};
return in;
}
template <typename FImpl>
std::vector<std::string> TA2AMesonField<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::setup(void)
{
gamma_.clear();
mom_.clear();
if (par().gammas == "all")
{
gamma_ = {
Gamma::Algebra::Gamma5,
Gamma::Algebra::Identity,
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
Gamma::Algebra::GammaXGamma5,
Gamma::Algebra::GammaYGamma5,
Gamma::Algebra::GammaZGamma5,
Gamma::Algebra::GammaTGamma5,
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::SigmaZT
};
}
else
{
gamma_ = strToVec<Gamma::Algebra>(par().gammas);
}
for (auto &pstr: par().mom)
{
auto p = strToVec<Real>(pstr);
if (p.size() != env().getNd() - 1)
{
HADRONS_ERROR(Size, "Momentum has " + std::to_string(p.size())
+ " components instead of "
+ std::to_string(env().getNd() - 1));
}
mom_.push_back(p);
}
envCache(std::vector<LatticeComplex>, momphName_, 1,
par().mom.size(), env().getGrid());
envTmpLat(LatticeComplex, "coor");
// preallocate memory for meson field block
auto tgp = env().getDim().back()*gamma_.size()*mom_.size();
envTmp(Vector<MF_IO_TYPE>, "mfBuf", 1, tgp*par().block*par().block);
envTmp(Vector<Complex>, "mfCache", 1, tgp*par().cacheBlock*par().cacheBlock);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::execute(void)
{
auto &v = envGet(std::vector<FermionField>, par().v);
auto &w = envGet(std::vector<FermionField>, par().w);
int nt = env().getDim().back();
int N_i = w.size();
int N_j = v.size();
int ngamma = gamma_.size();
int nmom = mom_.size();
int block = par().block;
int cacheBlock = par().cacheBlock;
LOG(Message) << "Computing all-to-all meson fields" << std::endl;
LOG(Message) << "W: '" << par().w << "' V: '" << par().v << "'" << std::endl;
LOG(Message) << "Momenta:" << std::endl;
for (auto &p: mom_)
{
LOG(Message) << " " << p << std::endl;
}
LOG(Message) << "Spin bilinears:" << std::endl;
for (auto &g: gamma_)
{
LOG(Message) << " " << g << std::endl;
}
LOG(Message) << "Meson field size: " << nt << "*" << N_i << "*" << N_j
<< " (filesize " << sizeString(nt*N_i*N_j*sizeof(MF_IO_TYPE))
<< "/momentum/bilinear)" << std::endl;
///////////////////////////////////////////////
// Momentum setup
///////////////////////////////////////////////
auto &ph = envGet(std::vector<LatticeComplex>, momphName_);
if (!hasPhase_)
{
startTimer("Momentum phases");
for (unsigned int j = 0; j < nmom; ++j)
{
Complex i(0.0,1.0);
std::vector<Real> p;
envGetTmp(LatticeComplex, coor);
ph[j] = zero;
for(unsigned int mu = 0; mu < mom_[j].size(); mu++)
{
LatticeCoordinate(coor, mu);
ph[j] = ph[j] + (mom_[j][mu]/env().getDim(mu))*coor;
}
ph[j] = exp((Real)(2*M_PI)*i*ph[j]);
}
hasPhase_ = true;
stopTimer("Momentum phases");
}
//////////////////////////////////////////////////////////////////////////
// i,j is first loop over SchurBlock factors reusing 5D matrices
// ii,jj is second loop over cacheBlock factors for high perf contractoin
// iii,jjj are loops within cacheBlock
// Total index is sum of these i+ii+iii etc...
//////////////////////////////////////////////////////////////////////////
double flops;
double bytes;
double vol = env().getVolume();
double t_kernel = 0.0;
double nodes = env().getGrid()->NodeCount();
double tot_kernel;
envGetTmp(Vector<MF_IO_TYPE>, mfBuf);
envGetTmp(Vector<Complex>, mfCache);
double t0 = usecond();
int NBlock_i = N_i/block + (((N_i % block) != 0) ? 1 : 0);
int NBlock_j = N_j/block + (((N_j % block) != 0) ? 1 : 0);
for(int i=0;i<N_i;i+=block)
for(int j=0;j<N_j;j+=block)
{
// Get the W and V vectors for this block^2 set of terms
int N_ii = MIN(N_i-i,block);
int N_jj = MIN(N_j-j,block);
LOG(Message) << "Meson field block "
<< j/block + NBlock_j*i/block + 1
<< "/" << NBlock_i*NBlock_j << " [" << i <<" .. "
<< i+N_ii-1 << ", " << j <<" .. " << j+N_jj-1 << "]"
<< std::endl;
MesonFieldIo mfBlock(mfBuf.data(),nmom,ngamma,nt,N_ii,N_jj);
// Series of cache blocked chunks of the contractions within this block
flops = 0.0;
bytes = 0.0;
for(int ii=0;ii<N_ii;ii+=cacheBlock)
for(int jj=0;jj<N_jj;jj+=cacheBlock)
{
int N_iii = MIN(N_ii-ii,cacheBlock);
int N_jjj = MIN(N_jj-jj,cacheBlock);
MesonField mfCacheBlock(mfCache.data(),nmom,ngamma,nt,N_iii,N_jjj);
startTimer("contraction: total");
makeMesonFieldBlock(mfCacheBlock, &w[i+ii], &v[j+jj], gamma_, ph,
env().getNd() - 1, this);
stopTimer("contraction: total");
// flops for general N_c & N_s
flops += vol * ( 2 * 8.0 + 6.0 + 8.0*nmom) * N_iii*N_jjj*ngamma;
bytes += vol * (12.0 * sizeof(Complex) ) * N_iii*N_jjj
+ vol * ( 2.0 * sizeof(Complex) *nmom ) * N_iii*N_jjj* ngamma;
startTimer("cache copy");
parallel_for_nest5(int m =0;m< nmom;m++)
for(int g =0;g< ngamma;g++)
for(int t =0;t< nt;t++)
for(int iii=0;iii< N_iii;iii++)
for(int jjj=0;jjj< N_jjj;jjj++)
{
mfBlock(m,g,t,ii+iii,jj+jjj) = mfCacheBlock(m,g,t,iii,jjj);
}
stopTimer("cache copy");
}
// perf
tot_kernel = getDTimer("contraction: colour trace & mom.")
+ getDTimer("contraction: local space sum");
t_kernel = tot_kernel - t_kernel;
LOG(Message) << "Kernel perf " << flops/t_kernel/1.0e3/nodes
<< " Gflop/s/node " << std::endl;
LOG(Message) << "Kernel perf " << bytes/t_kernel*1.0e6/1024/1024/1024/nodes
<< " GB/s/node " << std::endl;
t_kernel = tot_kernel;
// IO
if (!par().output.empty())
{
double blockSize, ioTime;
unsigned int myRank = env().getGrid()->ThisRank(),
nRank = env().getGrid()->RankCount();
LOG(Message) << "Writing block to disk" << std::endl;
ioTime = -getDTimer("IO: write block");
startTimer("IO: total");
makeFileDir(filename(0, 0), env().getGrid());
#ifdef MF_PARALLEL_IO
env().getGrid()->Barrier();
nodeFile_.clear();
for(int f = myRank; f < nmom*ngamma; f += nRank)
{
std::pair<unsigned int, unsigned int> file;
file.first = f/ngamma;
file.second = f % ngamma;
nodeFile_.push_back(file);
}
// parallel IO
for (auto &f: nodeFile_)
{
auto m = f.first, g = f.second;
if ((i == 0) and (j == 0))
{
startTimer("IO: file creation");
initFile(m, g);
stopTimer("IO: file creation");
}
startTimer("IO: write block");
saveBlock(mfBlock, m, g, i, j);
stopTimer("IO: write block");
}
env().getGrid()->Barrier();
#else
// serial IO
for(int m = 0; m < nmom; m++)
for(int g = 0; g < ngamma; g++)
{
if ((i == 0) and (j == 0))
{
startTimer("IO: file creation");
if (env().getGrid()->IsBoss())
{
initFile(m, g);
}
stopTimer("IO: file creation");
}
startTimer("IO: write block");
if (env().getGrid()->IsBoss())
{
saveBlock(mfBlock, m, g, i, j);
}
stopTimer("IO: write block");
}
#endif
stopTimer("IO: total");
blockSize = static_cast<double>(nmom*ngamma*nt*N_ii*N_jj*sizeof(MF_IO_TYPE));
ioTime += getDTimer("IO: write block");
LOG(Message) << "HDF5 IO done " << sizeString(blockSize) << " in "
<< ioTime << " us ("
<< blockSize/ioTime*1.0e6/1024/1024
<< " MB/s)" << std::endl;
}
}
}
// IO
template <typename FImpl>
std::string TA2AMesonField<FImpl>::ioname(unsigned int m, unsigned int g) const
{
std::stringstream ss;
ss << gamma_[g] << "_";
for (unsigned int mu = 0; mu < mom_[m].size(); ++mu)
{
ss << mom_[m][mu] << ((mu == mom_[m].size() - 1) ? "" : "_");
}
return ss.str();
}
template <typename FImpl>
std::string TA2AMesonField<FImpl>::filename(unsigned int m, unsigned int g) const
{
return par().output + "." + std::to_string(vm().getTrajectory())
+ "/" + ioname(m, g) + ".h5";
}
template <typename FImpl>
void TA2AMesonField<FImpl>::initFile(unsigned int m, unsigned int g)
{
#ifdef HAVE_HDF5
std::string f = filename(m, g);
auto &v = envGet(std::vector<FermionField>, par().v);
auto &w = envGet(std::vector<FermionField>, par().w);
int nt = env().getDim().back();
int N_i = w.size();
int N_j = v.size();
Hdf5Writer writer(f);
std::vector<hsize_t> dim = {static_cast<hsize_t>(nt),
static_cast<hsize_t>(N_i),
static_cast<hsize_t>(N_j)},
chunk = {static_cast<hsize_t>(nt),
static_cast<hsize_t>(par().block),
static_cast<hsize_t>(par().block)};
H5NS::DataSpace dataspace(dim.size(), dim.data());
H5NS::DataSet dataset;
H5NS::DSetCreatPropList plist;
push(writer, ioname(m, g));
write(writer, "momentum", mom_[m]);
write(writer, "gamma", gamma_[g]);
auto &group = writer.getGroup();
plist.setChunk(chunk.size(), chunk.data());
dataset = group.createDataSet("mesonField", Hdf5Type<MF_IO_TYPE>::type(),
dataspace, plist);
#else
HADRONS_ERROR(Implementation, "meson field I/O needs HDF5 library");
#endif
}
template <typename FImpl>
void TA2AMesonField<FImpl>::saveBlock(const MesonFieldIo &mf,
unsigned int m, unsigned int g,
unsigned int i, unsigned int j)
{
#ifdef HAVE_HDF5
std::string f = filename(m, g);
Hdf5Reader reader(f);
hsize_t nt = mf.dimension(2),
Ni = mf.dimension(3),
Nj = mf.dimension(4);
std::vector<hsize_t> count = {nt, Ni, Nj},
offset = {0, static_cast<hsize_t>(i),
static_cast<hsize_t>(j)},
stride = {1, 1, 1},
block = {1, 1, 1};
H5NS::DataSpace memspace(count.size(), count.data()), dataspace;
H5NS::DataSet dataset;
size_t shift;
push(reader, ioname(m, g));
auto &group = reader.getGroup();
dataset = group.openDataSet("mesonField");
dataspace = dataset.getSpace();
dataspace.selectHyperslab(H5S_SELECT_SET, count.data(), offset.data(),
stride.data(), block.data());
shift = (m*mf.dimension(1) + g)*nt*Ni*Nj;
dataset.write(mf.data() + shift, Hdf5Type<MF_IO_TYPE>::type(), memspace,
dataspace);
#else
HADRONS_ERROR(Implementation, "meson field I/O needs HDF5 library");
#endif
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2AMesonField_hpp_