1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-21 01:25:48 +01:00
Grid/lib/qcd/action/fermion/CayleyFermion5Dvec.cc
2016-12-08 17:28:28 +00:00

623 lines
19 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CayleyFermion5D.cc
Copyright (C) 2015
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Eigen/Dense>
#include <Grid.h>
namespace Grid {
namespace QCD { /*
* Dense matrix versions of routines
*/
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &chi)
{
this->MooeeInternal(psi,chi,DaggerYes,InverseYes);
}
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInv(const FermionField &psi, FermionField &chi)
{
this->MooeeInternal(psi,chi,DaggerNo,InverseYes);
}
template<class Impl>
void CayleyFermion5D<Impl>::M5D(const FermionField &psi,
const FermionField &phi,
FermionField &chi,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper)
{
GridBase *grid=psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
const int nsimd= Simd::Nsimd();
Vector<iSinglet<Simd> > u(LLs);
Vector<iSinglet<Simd> > l(LLs);
Vector<iSinglet<Simd> > d(LLs);
assert(Ls/LLs==nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard=psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type * u_p = (scalar_type *)&u[0];
scalar_type * l_p = (scalar_type *)&l[0];
scalar_type * d_p = (scalar_type *)&d[0];
for(int o=0;o<LLs;o++){ // outer
for(int i=0;i<nsimd;i++){ //inner
int s = o+i*LLs;
int ss = o*nsimd+i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
M5Dcalls++;
M5Dtime-=usecond();
assert(Nc==3);
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0;v<LLs;v++){
int vp=(v+1)%LLs;
int vm=(v+LLs-1)%LLs;
spProj5m(hp,psi[ss+vp]);
spProj5p(hm,psi[ss+vm]);
if ( vp<=v ) rotate(hp,hp,1);
if ( vm>=v ) rotate(hm,hm,nsimd-1);
hp=0.5*hp;
hm=0.5*hm;
spRecon5m(fp,hp);
spRecon5p(fm,hm);
chi[ss+v] = d[v]*phi[ss+v];
chi[ss+v] = chi[ss+v] +u[v]*fp;
chi[ss+v] = chi[ss+v] +l[v]*fm;
}
#else
for(int v=0;v<LLs;v++){
vprefetch(psi[ss+v+LLs]);
int vp= (v==LLs-1) ? 0 : v+1;
int vm= (v==0 ) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(2)(0);
Simd hp_01 = psi[ss+vp]()(2)(1);
Simd hp_02 = psi[ss+vp]()(2)(2);
Simd hp_10 = psi[ss+vp]()(3)(0);
Simd hp_11 = psi[ss+vp]()(3)(1);
Simd hp_12 = psi[ss+vp]()(3)(2);
Simd hm_00 = psi[ss+vm]()(0)(0);
Simd hm_01 = psi[ss+vm]()(0)(1);
Simd hm_02 = psi[ss+vm]()(0)(2);
Simd hm_10 = psi[ss+vm]()(1)(0);
Simd hm_11 = psi[ss+vm]()(1)(1);
Simd hm_12 = psi[ss+vm]()(1)(2);
if ( vp<=v ) {
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if ( vm>=v ) {
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
// Can force these to real arithmetic and save 2x.
Simd p_00 = real_mult(d[v]()()(), phi[ss+v]()(0)(0)) + real_mult(l[v]()()(),hm_00);
Simd p_01 = real_mult(d[v]()()(), phi[ss+v]()(0)(1)) + real_mult(l[v]()()(),hm_01);
Simd p_02 = real_mult(d[v]()()(), phi[ss+v]()(0)(2)) + real_mult(l[v]()()(),hm_02);
Simd p_10 = real_mult(d[v]()()(), phi[ss+v]()(1)(0)) + real_mult(l[v]()()(),hm_10);
Simd p_11 = real_mult(d[v]()()(), phi[ss+v]()(1)(1)) + real_mult(l[v]()()(),hm_11);
Simd p_12 = real_mult(d[v]()()(), phi[ss+v]()(1)(2)) + real_mult(l[v]()()(),hm_12);
Simd p_20 = real_mult(d[v]()()(), phi[ss+v]()(2)(0)) + real_mult(u[v]()()(),hp_00);
Simd p_21 = real_mult(d[v]()()(), phi[ss+v]()(2)(1)) + real_mult(u[v]()()(),hp_01);
Simd p_22 = real_mult(d[v]()()(), phi[ss+v]()(2)(2)) + real_mult(u[v]()()(),hp_02);
Simd p_30 = real_mult(d[v]()()(), phi[ss+v]()(3)(0)) + real_mult(u[v]()()(),hp_10);
Simd p_31 = real_mult(d[v]()()(), phi[ss+v]()(3)(1)) + real_mult(u[v]()()(),hp_11);
Simd p_32 = real_mult(d[v]()()(), phi[ss+v]()(3)(2)) + real_mult(u[v]()()(),hp_12);
vstream(chi[ss+v]()(0)(0),p_00);
vstream(chi[ss+v]()(0)(1),p_01);
vstream(chi[ss+v]()(0)(2),p_02);
vstream(chi[ss+v]()(1)(0),p_10);
vstream(chi[ss+v]()(1)(1),p_11);
vstream(chi[ss+v]()(1)(2),p_12);
vstream(chi[ss+v]()(2)(0),p_20);
vstream(chi[ss+v]()(2)(1),p_21);
vstream(chi[ss+v]()(2)(2),p_22);
vstream(chi[ss+v]()(3)(0),p_30);
vstream(chi[ss+v]()(3)(1),p_31);
vstream(chi[ss+v]()(3)(2),p_32);
}
#endif
}
M5Dtime+=usecond();
}
template<class Impl>
void CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi,
const FermionField &phi,
FermionField &chi,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper)
{
GridBase *grid=psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
int nsimd= Simd::Nsimd();
Vector<iSinglet<Simd> > u(LLs);
Vector<iSinglet<Simd> > l(LLs);
Vector<iSinglet<Simd> > d(LLs);
assert(Ls/LLs==nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard=psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type * u_p = (scalar_type *)&u[0];
scalar_type * l_p = (scalar_type *)&l[0];
scalar_type * d_p = (scalar_type *)&d[0];
for(int o=0;o<LLs;o++){ // outer
for(int i=0;i<nsimd;i++){ //inner
int s = o+i*LLs;
int ss = o*nsimd+i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
M5Dcalls++;
M5Dtime-=usecond();
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0;v<LLs;v++){
int vp=(v+1)%LLs;
int vm=(v+LLs-1)%LLs;
spProj5p(hp,psi[ss+vp]);
spProj5m(hm,psi[ss+vm]);
if ( vp<=v ) rotate(hp,hp,1);
if ( vm>=v ) rotate(hm,hm,nsimd-1);
hp=hp*0.5;
hm=hm*0.5;
spRecon5p(fp,hp);
spRecon5m(fm,hm);
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
chi[ss+v] = chi[ss+v] +l[v]*fm;
}
#else
for(int v=0;v<LLs;v++){
vprefetch(psi[ss+v+LLs]);
int vp= (v==LLs-1) ? 0 : v+1;
int vm= (v==0 ) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(0)(0);
Simd hp_01 = psi[ss+vp]()(0)(1);
Simd hp_02 = psi[ss+vp]()(0)(2);
Simd hp_10 = psi[ss+vp]()(1)(0);
Simd hp_11 = psi[ss+vp]()(1)(1);
Simd hp_12 = psi[ss+vp]()(1)(2);
Simd hm_00 = psi[ss+vm]()(2)(0);
Simd hm_01 = psi[ss+vm]()(2)(1);
Simd hm_02 = psi[ss+vm]()(2)(2);
Simd hm_10 = psi[ss+vm]()(3)(0);
Simd hm_11 = psi[ss+vm]()(3)(1);
Simd hm_12 = psi[ss+vm]()(3)(2);
if ( vp<=v ) {
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if ( vm>=v ) {
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
Simd p_00 = real_mult(d[v]()()(), phi[ss+v]()(0)(0)) + real_mult(u[v]()()(),hp_00);
Simd p_01 = real_mult(d[v]()()(), phi[ss+v]()(0)(1)) + real_mult(u[v]()()(),hp_01);
Simd p_02 = real_mult(d[v]()()(), phi[ss+v]()(0)(2)) + real_mult(u[v]()()(),hp_02);
Simd p_10 = real_mult(d[v]()()(), phi[ss+v]()(1)(0)) + real_mult(u[v]()()(),hp_10);
Simd p_11 = real_mult(d[v]()()(), phi[ss+v]()(1)(1)) + real_mult(u[v]()()(),hp_11);
Simd p_12 = real_mult(d[v]()()(), phi[ss+v]()(1)(2)) + real_mult(u[v]()()(),hp_12);
Simd p_20 = real_mult(d[v]()()(), phi[ss+v]()(2)(0)) + real_mult(l[v]()()(),hm_00);
Simd p_21 = real_mult(d[v]()()(), phi[ss+v]()(2)(1)) + real_mult(l[v]()()(),hm_01);
Simd p_22 = real_mult(d[v]()()(), phi[ss+v]()(2)(2)) + real_mult(l[v]()()(),hm_02);
Simd p_30 = real_mult(d[v]()()(), phi[ss+v]()(3)(0)) + real_mult(l[v]()()(),hm_10);
Simd p_31 = real_mult(d[v]()()(), phi[ss+v]()(3)(1)) + real_mult(l[v]()()(),hm_11);
Simd p_32 = real_mult(d[v]()()(), phi[ss+v]()(3)(2)) + real_mult(l[v]()()(),hm_12);
vstream(chi[ss+v]()(0)(0),p_00);
vstream(chi[ss+v]()(0)(1),p_01);
vstream(chi[ss+v]()(0)(2),p_02);
vstream(chi[ss+v]()(1)(0),p_10);
vstream(chi[ss+v]()(1)(1),p_11);
vstream(chi[ss+v]()(1)(2),p_12);
vstream(chi[ss+v]()(2)(0),p_20);
vstream(chi[ss+v]()(2)(1),p_21);
vstream(chi[ss+v]()(2)(2),p_22);
vstream(chi[ss+v]()(3)(0),p_30);
vstream(chi[ss+v]()(3)(1),p_31);
vstream(chi[ss+v]()(3)(2),p_32);
}
#endif
}
M5Dtime+=usecond();
}
#include <simd/Intel512common.h>
#include <simd/Intel512avx.h>
#include <simd/Intel512single.h>
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInternalAsm(const FermionField &psi, FermionField &chi,
int LLs, int site,
Vector<iSinglet<Simd> > &Matp,
Vector<iSinglet<Simd> > &Matm)
{
#if 0
{
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
SiteHalfSpinor SiteChiP;
SiteHalfSpinor SiteChiM;
// Ls*Ls * 2 * 12 * vol flops
for(int s1=0;s1<LLs;s1++){
for(int s2=0;s2<LLs;s2++){
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
int s=s2+l*LLs;
int lex=s2+LLs*site;
if ( s2==0 && l==0) {
SiteChiP=zero;
SiteChiM=zero;
}
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
vbroadcast(BcastP()(sp )(co),psi[lex]()(sp)(co),l);
}}
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
vbroadcast(BcastM()(sp )(co),psi[lex]()(sp+2)(co),l);
}}
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
SiteChiP()(sp)(co)=real_madd(Matp[LLs*s+s1]()()(),BcastP()(sp)(co),SiteChiP()(sp)(co)); // 1100 us.
SiteChiM()(sp)(co)=real_madd(Matm[LLs*s+s1]()()(),BcastM()(sp)(co),SiteChiM()(sp)(co)); // each found by commenting out
}}
}}
{
int lex = s1+LLs*site;
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
}}
}
}
}
#else
{
// pointers
// MASK_REGS;
#define Chi_00 %%zmm1
#define Chi_01 %%zmm2
#define Chi_02 %%zmm3
#define Chi_10 %%zmm4
#define Chi_11 %%zmm5
#define Chi_12 %%zmm6
#define Chi_20 %%zmm7
#define Chi_21 %%zmm8
#define Chi_22 %%zmm9
#define Chi_30 %%zmm10
#define Chi_31 %%zmm11
#define Chi_32 %%zmm12
#define BCAST0 %%zmm13
#define BCAST1 %%zmm14
#define BCAST2 %%zmm15
#define BCAST3 %%zmm16
#define BCAST4 %%zmm17
#define BCAST5 %%zmm18
#define BCAST6 %%zmm19
#define BCAST7 %%zmm20
#define BCAST8 %%zmm21
#define BCAST9 %%zmm22
#define BCAST10 %%zmm23
#define BCAST11 %%zmm24
int incr=LLs*LLs*sizeof(iSinglet<Simd>);
for(int s1=0;s1<LLs;s1++){
for(int s2=0;s2<LLs;s2++){
int lex=s2+LLs*site;
uint64_t a0 = (uint64_t)&Matp[LLs*s2+s1]; // should be cacheable
uint64_t a1 = (uint64_t)&Matm[LLs*s2+s1];
uint64_t a2 = (uint64_t)&psi[lex];
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
if ( (s2+l)==0 ) {
asm (
VPREFETCH1(0,%2) VPREFETCH1(0,%1)
VPREFETCH1(12,%2) VPREFETCH1(13,%2)
VPREFETCH1(14,%2) VPREFETCH1(15,%2)
VBCASTCDUP(0,%2,BCAST0)
VBCASTCDUP(1,%2,BCAST1)
VBCASTCDUP(2,%2,BCAST2)
VBCASTCDUP(3,%2,BCAST3)
VBCASTCDUP(4,%2,BCAST4) VMULMEM (0,%0,BCAST0,Chi_00)
VBCASTCDUP(5,%2,BCAST5) VMULMEM (0,%0,BCAST1,Chi_01)
VBCASTCDUP(6,%2,BCAST6) VMULMEM (0,%0,BCAST2,Chi_02)
VBCASTCDUP(7,%2,BCAST7) VMULMEM (0,%0,BCAST3,Chi_10)
VBCASTCDUP(8,%2,BCAST8) VMULMEM (0,%0,BCAST4,Chi_11)
VBCASTCDUP(9,%2,BCAST9) VMULMEM (0,%0,BCAST5,Chi_12)
VBCASTCDUP(10,%2,BCAST10) VMULMEM (0,%1,BCAST6,Chi_20)
VBCASTCDUP(11,%2,BCAST11) VMULMEM (0,%1,BCAST7,Chi_21)
VMULMEM (0,%1,BCAST8,Chi_22)
VMULMEM (0,%1,BCAST9,Chi_30)
VMULMEM (0,%1,BCAST10,Chi_31)
VMULMEM (0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
} else {
asm (
VBCASTCDUP(0,%2,BCAST0) VMADDMEM (0,%0,BCAST0,Chi_00)
VBCASTCDUP(1,%2,BCAST1) VMADDMEM (0,%0,BCAST1,Chi_01)
VBCASTCDUP(2,%2,BCAST2) VMADDMEM (0,%0,BCAST2,Chi_02)
VBCASTCDUP(3,%2,BCAST3) VMADDMEM (0,%0,BCAST3,Chi_10)
VBCASTCDUP(4,%2,BCAST4) VMADDMEM (0,%0,BCAST4,Chi_11)
VBCASTCDUP(5,%2,BCAST5) VMADDMEM (0,%0,BCAST5,Chi_12)
VBCASTCDUP(6,%2,BCAST6) VMADDMEM (0,%1,BCAST6,Chi_20)
VBCASTCDUP(7,%2,BCAST7) VMADDMEM (0,%1,BCAST7,Chi_21)
VBCASTCDUP(8,%2,BCAST8) VMADDMEM (0,%1,BCAST8,Chi_22)
VBCASTCDUP(9,%2,BCAST9) VMADDMEM (0,%1,BCAST9,Chi_30)
VBCASTCDUP(10,%2,BCAST10) VMADDMEM (0,%1,BCAST10,Chi_31)
VBCASTCDUP(11,%2,BCAST11) VMADDMEM (0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
}
a0 = a0+incr;
a1 = a1+incr;
a2 = a2+sizeof(Simd::scalar_type);
}}
{
int lexa = s1+LLs*site;
asm (
VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01) VSTORE(2 ,%0,Chi_02)
VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11) VSTORE(5 ,%0,Chi_12)
VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21) VSTORE(8 ,%0,Chi_22)
VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31) VSTORE(11,%0,Chi_32)
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
}
}
}
#endif
};
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv)
{
int Ls=this->Ls;
int LLs = psi._grid->_rdimensions[0];
int vol = psi._grid->oSites()/LLs;
chi.checkerboard=psi.checkerboard;
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
for(int s=0;s<Ls;s++){
Pplus(s,s) = bee[s];
Pminus(s,s)= bee[s];
}
for(int s=0;s<Ls-1;s++){
Pminus(s,s+1) = -cee[s];
}
for(int s=0;s<Ls-1;s++){
Pplus(s+1,s) = -cee[s+1];
}
Pplus (0,Ls-1) = mass*cee[0];
Pminus(Ls-1,0) = mass*cee[Ls-1];
Eigen::MatrixXcd PplusMat ;
Eigen::MatrixXcd PminusMat;
if ( inv ) {
PplusMat =Pplus.inverse();
PminusMat=Pminus.inverse();
} else {
PplusMat =Pplus;
PminusMat=Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
typedef typename SiteHalfSpinor::scalar_type scalar_type;
const int Nsimd=Simd::Nsimd();
Vector<iSinglet<Simd> > Matp(Ls*LLs);
Vector<iSinglet<Simd> > Matm(Ls*LLs);
for(int s2=0;s2<Ls;s2++){
for(int s1=0;s1<LLs;s1++){
int istride = LLs;
int ostride = 1;
Simd Vp;
Simd Vm;
scalar_type *sp = (scalar_type *)&Vp;
scalar_type *sm = (scalar_type *)&Vm;
for(int l=0;l<Nsimd;l++){
sp[l] = PplusMat (l*istride+s1*ostride,s2);
sp[l] = scalar_type(sp[l].real(),sp[l].real());
sm[l] = PminusMat(l*istride+s1*ostride,s2);
sm[l] = scalar_type(sm[l].real(),sm[l].real());
}
Matp[LLs*s2+s1] = Vp;
Matm[LLs*s2+s1] = Vm;
}}
MooeeInvCalls++;
MooeeInvTime-=usecond();
// Dynamic allocate on stack to get per thread without serialised heap acces
#if 0
#pragma omp parallel
{
std::vector<SiteHalfSpinor> SitePplus(LLs);
std::vector<SiteHalfSpinor> SitePminus(LLs);
std::vector<SiteHalfSpinor> SiteChiP(LLs);
std::vector<SiteHalfSpinor> SiteChiM(LLs);
std::vector<SiteSpinor> SiteChi(LLs);
#pragma omp for
for(auto site=0;site<vol;site++){
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
for(int s=0;s<LLs;s++){
int lex = s+LLs*site;
spProj5p(SitePplus[s] ,psi[lex]);
spProj5m(SitePminus[s],psi[lex]);
SiteChiP[s]=zero;
SiteChiM[s]=zero;
}
int s=0;
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
for(int s2=0;s2<LLs;s2++){ // Column loop of right hand side
vbroadcast(BcastP,SitePplus [s2],l);
vbroadcast(BcastM,SitePminus[s2],l);
for(int s1=0;s1<LLs;s1++){ // Column loop of reduction variables
SiteChiP[s1]=SiteChiP[s1]+Matp[LLs*s+s1]*BcastP;
SiteChiM[s1]=SiteChiM[s1]+Matm[LLs*s+s1]*BcastM;
}
s++;
}
}
for(int s=0;s<LLs;s++){
int lex = s+LLs*site;
spRecon5p(SiteChi[s],SiteChiP[s]);
accumRecon5m(SiteChi[s],SiteChiM[s]);
chi[lex] = SiteChi[s]*0.5;
}
}}
#else
PARALLEL_FOR_LOOP
for(auto site=0;site<vol;site++){
MooeeInternalAsm(psi,chi,
LLs,site,
Matp,Matm);
}
#endif
MooeeInvTime+=usecond();
}
INSTANTIATE_DPERP(DomainWallVec5dImplD);
INSTANTIATE_DPERP(DomainWallVec5dImplF);
INSTANTIATE_DPERP(ZDomainWallVec5dImplD);
INSTANTIATE_DPERP(ZDomainWallVec5dImplF);
template void CayleyFermion5D<DomainWallVec5dImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<DomainWallVec5dImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
}}