mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
158 lines
4.5 KiB
C++
158 lines
4.5 KiB
C++
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H
|
|
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_EVEN_ODD_H
|
|
|
|
namespace Grid{
|
|
namespace QCD{
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Two flavour pseudofermion action for any EO prec dop
|
|
////////////////////////////////////////////////////////////////////////
|
|
template<class Impl>
|
|
class TwoFlavourEvenOddPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
|
|
|
public:
|
|
|
|
INHERIT_IMPL_TYPES(Impl);
|
|
|
|
private:
|
|
|
|
FermionOperator<Impl> & FermOp;// the basic operator
|
|
|
|
OperatorFunction<FermionField> &DerivativeSolver;
|
|
OperatorFunction<FermionField> &ActionSolver;
|
|
|
|
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
|
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
|
|
|
public:
|
|
/////////////////////////////////////////////////
|
|
// Pass in required objects.
|
|
/////////////////////////////////////////////////
|
|
TwoFlavourEvenOddPseudoFermionAction(FermionOperator<Impl> &Op,
|
|
OperatorFunction<FermionField> & DS,
|
|
OperatorFunction<FermionField> & AS
|
|
) :
|
|
FermOp(Op),
|
|
DerivativeSolver(DS),
|
|
ActionSolver(AS),
|
|
PhiEven(Op.FermionRedBlackGrid()),
|
|
PhiOdd(Op.FermionRedBlackGrid())
|
|
{};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////
|
|
// Push the gauge field in to the dops. Assume any BC's and smearing already applied
|
|
//////////////////////////////////////////////////////////////////////////////////////
|
|
virtual void init(const GaugeField &U, GridParallelRNG& pRNG) {
|
|
|
|
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1 phi}
|
|
// Phi = McpDag eta
|
|
// P(eta) = e^{- eta^dag eta}
|
|
//
|
|
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
|
|
|
RealD scale = std::sqrt(0.5);
|
|
|
|
FermionField eta (FermOp.FermionGrid());
|
|
FermionField etaOdd (FermOp.FermionRedBlackGrid());
|
|
FermionField etaEven(FermOp.FermionRedBlackGrid());
|
|
|
|
gaussian(pRNG,eta);
|
|
pickCheckerboard(Even,etaEven,eta);
|
|
pickCheckerboard(Odd,etaOdd,eta);
|
|
|
|
FermOp.ImportGauge(U);
|
|
SchurDifferentiableOperator<Impl> PCop(FermOp);
|
|
|
|
|
|
PCop.MpcDag(etaOdd,PhiOdd);
|
|
|
|
FermOp.MooeeDag(etaEven,PhiEven);
|
|
|
|
PhiOdd =PhiOdd*scale;
|
|
PhiEven=PhiEven*scale;
|
|
|
|
};
|
|
|
|
//////////////////////////////////////////////////////
|
|
// S = phi^dag (Mdag M)^-1 phi (odd)
|
|
// + phi^dag (Mdag M)^-1 phi (even)
|
|
//////////////////////////////////////////////////////
|
|
virtual RealD S(const GaugeField &U) {
|
|
|
|
FermOp.ImportGauge(U);
|
|
|
|
FermionField X(FermOp.FermionRedBlackGrid());
|
|
FermionField Y(FermOp.FermionRedBlackGrid());
|
|
|
|
SchurDifferentiableOperator<Impl> PCop(FermOp);
|
|
|
|
X=zero;
|
|
ActionSolver(PCop,PhiOdd,X);
|
|
PCop.Op(X,Y);
|
|
RealD action = norm2(Y);
|
|
|
|
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
|
|
// Only really clover term that creates this.
|
|
FermOp.MooeeInvDag(PhiEven,Y);
|
|
action = action + norm2(Y);
|
|
|
|
std::cout << GridLogMessage << "Pseudofermion EO action "<<action<<std::endl;
|
|
return action;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////
|
|
//
|
|
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
|
|
// = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM (Mdag)^-1 phi
|
|
//
|
|
// = - Ydag dM X - Xdag dMdag Y
|
|
//
|
|
//////////////////////////////////////////////////////
|
|
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
|
|
|
FermOp.ImportGauge(U);
|
|
|
|
FermionField X(FermOp.FermionRedBlackGrid());
|
|
FermionField Y(FermOp.FermionRedBlackGrid());
|
|
GaugeField tmp(FermOp.GaugeGrid());
|
|
|
|
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
|
|
|
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
|
|
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
|
|
|
|
X=zero;
|
|
DerivativeSolver(Mpc,PhiOdd,X);
|
|
Mpc.Mpc(X,Y);
|
|
Mpc.MpcDeriv(tmp , Y, X ); dSdU=tmp;
|
|
Mpc.MpcDagDeriv(tmp , X, Y); dSdU=dSdU+tmp;
|
|
|
|
// Treat the EE case. (MdagM)^-1 = Minv Minvdag
|
|
// Deriv defaults to zero.
|
|
// FermOp.MooeeInvDag(PhiOdd,Y);
|
|
// FermOp.MooeeInv(Y,X);
|
|
// FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
|
|
// FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
|
|
|
|
assert(FermOp.ConstEE() == 1);
|
|
|
|
/*
|
|
FermOp.MooeeInvDag(PhiOdd,Y);
|
|
FermOp.MooeeInv(Y,X);
|
|
FermOp.MeeDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
|
|
FermOp.MeeDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
|
|
*/
|
|
|
|
dSdU = Ta(dSdU);
|
|
|
|
};
|
|
|
|
};
|
|
|
|
}
|
|
}
|
|
|
|
#endif
|