1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-05-08 19:45:56 +01:00
Grid/Grid/qcd/action/pseudofermion/DomainDecomposedBoundaryTwoFlavourPseudoFermion.h
2022-04-05 16:24:34 -04:00

159 lines
4.8 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class ImplD,class ImplF>
class DomainDecomposedBoundaryTwoFlavourPseudoFermion : public Action<typename ImplD::GaugeField> {
public:
INHERIT_IMPL_TYPES(ImplD);
private:
SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
RealD ActionStoppingCondition;
RealD DerivativeStoppingCondition;
RealD InnerStoppingCondition;
FermionField Phi; // the pseudo fermion field for this trajectory
RealD refresh_action;
public:
DomainDecomposedBoundaryTwoFlavourPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_DenOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol = 1.0e-6 )
: DenOp(_DenOp),
DerivativeStoppingCondition(_DerivativeTol),
ActionStoppingCondition(_ActionTol),
InnerStoppingCondition(_InnerTol),
Phi(_DenOp.FermionGrid()) {};
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourPseudoFermion";}
virtual std::string LogParameters(){
std::stringstream sstream;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
{
// P(phi) = e^{- phi^dag Rdag^-1 R^-1 phi}
//
// DenOp == R
//
// Take phi = R eta ; eta = R^-1 Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol =ActionStoppingCondition;
DenOp.ImportGauge(U);
FermionField eta(DenOp.FermionGrid());
gaussian(pRNG,eta); eta=eta*scale;
DenOp.ProjectBoundaryBar(eta);
DenOp.R(eta,Phi);
//DumpSliceNorm("Phi",Phi);
refresh_action = norm2(eta);
};
//////////////////////////////////////////////////////
// S = phi^dag Rdag^-1 R^-1 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol=ActionStoppingCondition;
DenOp.ImportGauge(U);
FermionField X(DenOp.FermionGrid());
DenOp.RInv(Phi,X);
RealD action = norm2(X);
return action;
};
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
{
DenOp.tolinner=InnerStoppingCondition;
DenOp.tol=DerivativeStoppingCondition;
DenOp.ImportGauge(U);
GridBase *fgrid = DenOp.FermionGrid();
GridBase *ugrid = DenOp.GaugeGrid();
FermionField X(fgrid);
FermionField Y(fgrid);
FermionField tmp(fgrid);
GaugeField force(ugrid);
FermionField DiDdb_Phi(fgrid); // Vector C in my notes
FermionField DidRinv_Phi(fgrid); // Vector D in my notes
FermionField Rinv_Phi(fgrid);
// FermionField RinvDagRinv_Phi(fgrid);
// FermionField DdbdDidRinv_Phi(fgrid);
// R^-1 term
DenOp.dBoundaryBar(Phi,tmp);
DenOp.Dinverse(tmp,DiDdb_Phi); // Vector C
Rinv_Phi = Phi - DiDdb_Phi;
DenOp.ProjectBoundaryBar(Rinv_Phi);
// R^-dagger R^-1 term
DenOp.DinverseDag(Rinv_Phi,DidRinv_Phi); // Vector D
/*
DenOp.dBoundaryBarDag(DidRinv_Phi,DdbdDidRinv_Phi);
RinvDagRinv_Phi = Rinv_Phi - DdbdDidRinv_Phi;
DenOp.ProjectBoundaryBar(RinvDagRinv_Phi);
*/
X = DiDdb_Phi;
Y = DidRinv_Phi;
DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=force;
DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
DumpSliceNorm("force",dSdU);
dSdU *= -1.0;
};
};
NAMESPACE_END(Grid);