1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00
Grid/benchmarks/Benchmark_gparity.cc
2018-12-13 05:11:34 +00:00

191 lines
7.4 KiB
C++

#include <Grid/Grid.h>
#include <sstream>
using namespace std;
using namespace Grid;
;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
typedef typename GparityDomainWallFermionF::FermionField GparityLatticeFermionF;
typedef typename GparityDomainWallFermionD::FermionField GparityLatticeFermionD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int Ls=16;
for(int i=0;i<argc;i++)
if(std::string(argv[i]) == "-Ls"){
std::stringstream ss(argv[i+1]); ss >> Ls;
}
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "Ls = " << Ls << std::endl;
Coordinate latt4 = GridDefaultLatt();
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::cout << GridLogMessage << "Initialising 4d RNG" << std::endl;
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl;
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
GparityLatticeFermionF src (FGrid); random(RNG5,src);
RealD N2 = 1.0/::sqrt(norm2(src));
src = src*N2;
GparityLatticeFermionF result(FGrid); result=Zero();
GparityLatticeFermionF ref(FGrid); ref=Zero();
GparityLatticeFermionF tmp(FGrid);
GparityLatticeFermionF err(FGrid);
std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
LatticeGaugeFieldF Umu(UGrid);
SU3::HotConfiguration(RNG4,Umu);
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
RealD mass=0.1;
RealD M5 =1.8;
RealD NP = UGrid->_Nprocessors;
RealD NN = UGrid->NodeCount();
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking DomainWallFermion::Dhop "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplexF::Nsimd()<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* SINGLE/SINGLE"<<std::endl;
GparityDomainWallFermionF Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
int ncall =1000;
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
Dw.Dhop(src,result,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
Dw.Dhop(src,result,0);
__SSC_STOP;
}
double t1=usecond();
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1320*volume*ncall;
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
Dw.Report();
}
std::cout << GridLogMessage<< "* SINGLE/HALF"<<std::endl;
GparityDomainWallFermionFH DwH(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
if (1) {
FGrid->Barrier();
DwH.ZeroCounters();
DwH.Dhop(src,result,0);
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
DwH.Dhop(src,result,0);
__SSC_STOP;
}
double t1=usecond();
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1320*volume*ncall;
std::cout<<GridLogMessage << "Called half prec comms Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
DwH.Report();
}
GridCartesian * UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexD::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_d);
GridCartesian * FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_d);
GridRedBlackCartesian * FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_d);
std::cout << GridLogMessage<< "* DOUBLE/DOUBLE"<<std::endl;
GparityLatticeFermionD src_d(FGrid_d);
precisionChange(src_d,src);
LatticeGaugeFieldD Umu_d(UGrid_d);
precisionChange(Umu_d,Umu);
GparityLatticeFermionD result_d(FGrid_d);
GparityDomainWallFermionD DwD(Umu_d,*FGrid_d,*FrbGrid_d,*UGrid_d,*UrbGrid_d,mass,M5);
if (1) {
FGrid_d->Barrier();
DwD.ZeroCounters();
DwD.Dhop(src_d,result_d,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
DwD.Dhop(src_d,result_d,0);
__SSC_STOP;
}
double t1=usecond();
FGrid_d->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1320*volume*ncall;
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
DwD.Report();
}
Grid_finalize();
}