1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/qcd/action/fermion/WilsonCloverFermion.cc
2017-05-01 11:06:21 +01:00

229 lines
7.8 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.cc
Copyright (C) 2017
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/Eigen/Dense>
#include <Grid/qcd/spin/Dirac.h>
namespace Grid
{
namespace QCD
{
//WilsonLoop::CloverPlaquette
/////////////////////////////////////////////////////
//// Clover plaquette combination in mu,nu plane with Double Stored U
////////////////////////////////////////////////////
//static void CloverPlaquette(GaugeMat &Q, const std::vector<GaugeMat> &U,
// const int mu, const int nu){
// Q = zero;
// Q += Gimpl::CovShiftBackward(
// U[mu], mu, Gimpl::CovShiftBackward(
// U[nu], nu, Gimpl::CovShiftForward(U[mu], mu, U[nu] )));
// Q += Gimpl::CovShiftForward(
// U[mu], mu, Gimpl::CovShiftForward(
// U[nu], nu, Gimpl::CovShiftBackward(U[mu], mu, U[nu+Nd] )));
// Q += Gimpl::CovShiftBackward(
// U[nu], nu, Gimpl::CovShiftForward(
// U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[mu+Nd] )));
// Q += Gimpl::CovShiftForward(
// U[mu], mu, Gimpl::CovShiftBackward(
// U[nu], nu, Gimpl::CovShiftBackward(U[mu], mu, U[nu] )));
// }
// *NOT* EO
template <class Impl>
RealD WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
{
// Wilson term
out.checkerboard = in.checkerboard;
this->Dhop(in, out, DaggerNo);
// Clover term
// apply the sigma and Fmunu
FermionField temp(out._grid);
Mooee(in, temp);
// overall factor
out += temp;
return axpy_norm(out, 4 + this->mass, in, out);
}
template <class Impl>
RealD WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
{
// Wilson term
out.checkerboard = in.checkerboard;
this->Dhop(in, out, DaggerYes);
// Clover term
// apply the sigma and Fmunu
FermionField temp(out._grid);
MooeeDag(in, temp);
out+=temp;
return axpy_norm(out, 4 + this->mass, in, out);
}
template <class Impl>
void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
{
this->ImportGauge(_Umu);
GridBase *grid = _Umu._grid;
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
// Compute the field strength terms
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Ydir, Zdir);
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Xdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
// Compute the Clover Operator acting on Colour and Spin
CloverTerm = fillClover(Bx) * (Gamma(Gamma::Algebra::SigmaYZ));
CloverTerm += fillClover(By) * (Gamma(Gamma::Algebra::MinusSigmaXZ));
CloverTerm += fillClover(Bz) * (Gamma(Gamma::Algebra::SigmaXY));
CloverTerm += fillClover(Ex) * (Gamma(Gamma::Algebra::MinusSigmaXT));
CloverTerm += fillClover(Ey) * (Gamma(Gamma::Algebra::MinusSigmaYT));
CloverTerm += fillClover(Ez) * (Gamma(Gamma::Algebra::MinusSigmaZT));
CloverTerm *= csw;
int lvol = _Umu._grid->lSites();
int DimRep = Impl::Dimension;
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
std::vector<int> lcoor;
typename SiteCloverType::scalar_object Qx = zero, Qxinv = zero;
for (int site = 0; site < lvol; site++)
{
grid->LocalIndexToLocalCoor(site, lcoor);
EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
peekLocalSite(Qx, CloverTerm, lcoor);
Qxinv = zero;
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++)
EigenCloverOp(a + j * DimRep, b + k * DimRep) = Qx()(j, k)(a, b);
EigenInvCloverOp = EigenCloverOp.inverse();
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
for (int a = 0; a < DimRep; a++)
for (int b = 0; b < DimRep; b++)
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
pokeLocalSite(Qxinv, CloverTermInv, lcoor);
// Separate the even and odd parts.
pickCheckerboard(Even, CloverTermEven, CloverTerm);
pickCheckerboard( Odd, CloverTermOdd, CloverTerm);
pickCheckerboard(Even, CloverTermInvEven, CloverTermInv);
pickCheckerboard( Odd, CloverTermInvOdd, CloverTermInv);
}
}
template <class Impl>
void WilsonCloverFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
{
this->MooeeInternal(in, out, DaggerNo, InverseNo);
}
template <class Impl>
void WilsonCloverFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
{
this->MooeeInternal(in, out, DaggerNo, InverseYes);
}
template <class Impl>
void WilsonCloverFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{
this->MooeeInternal(in, out, DaggerNo, InverseYes);
}
template <class Impl>
void WilsonCloverFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{
this->MooeeInternal(in, out, DaggerNo, InverseYes);
}
template <class Impl>
void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
{
out.checkerboard = in.checkerboard;
CloverFieldType *Clover;
if (in.checkerboard == Odd){
std::cout << "Calling clover term Odd" << std::endl;
Clover = (inv) ? &CloverTermInvOdd : &CloverTermOdd;
}
if (in.checkerboard == Even){
std::cout << "Calling clover term Even" << std::endl;
Clover = (inv) ? &CloverTermInvEven : &CloverTermEven;
}
if (dag){ out = adj(*Clover) * in;} else { out = *Clover * in;}
} // MooeeInternal
// Derivative parts
template <class Impl>
void WilsonCloverFermion<Impl>::MDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{
GaugeField tmp(mat._grid);
conformable(U._grid, V._grid);
conformable(U._grid, mat._grid);
mat.checkerboard = U.checkerboard;
tmp.checkerboard = U.checkerboard;
this->DhopDeriv(mat, U, V, dag);
MooDeriv(tmp, U, V, dag);
mat += tmp;
}
// Derivative parts
template <class Impl>
void WilsonCloverFermion<Impl>::MooDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{
// Compute the 8 terms of the derivative
assert(0); // not implemented yet
}
// Derivative parts
template <class Impl>
void WilsonCloverFermion<Impl>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
{
assert(0); // not implemented yet
}
FermOpTemplateInstantiate(WilsonCloverFermion); // now only for the fundamental representation
//AdjointFermOpTemplateInstantiate(WilsonCloverFermion);
//TwoIndexFermOpTemplateInstantiate(WilsonCloverFermion);
//GparityFermOpTemplateInstantiate(WilsonCloverFermion);
}
}