1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 08:55:37 +00:00
LatAnalyze/lib/Math.hpp

156 lines
3.9 KiB
C++
Raw Normal View History

/*
* Math.hpp, part of LatAnalyze 3
*
2015-06-11 14:04:54 +01:00
* Copyright (C) 2013 - 2015 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef Latan_Math_hpp_
#define Latan_Math_hpp_
2014-03-13 18:51:01 +00:00
#include <LatAnalyze/Global.hpp>
#include <LatAnalyze/Function.hpp>
#include <LatAnalyze/MathInterpreter.hpp>
BEGIN_LATAN_NAMESPACE
2014-04-15 17:30:51 +01:00
/******************************************************************************
* Custom math functions *
******************************************************************************/
#define MATH_NAMESPACE Math
namespace MATH_NAMESPACE
{
// integer power function
template <unsigned int n, typename T>
typename std::enable_if<(n == 0), T>::type pow(const T x __dumb)
2014-04-15 17:30:51 +01:00
{
return 1;
}
template <unsigned int n, typename T>
typename std::enable_if<(n == 1), T>::type pow(const T x)
{
return x;
}
template <unsigned int n, typename T>
typename std::enable_if<(n > 1), T>::type pow(const T x)
{
return x*pow<n-1>(x);
}
2015-01-28 17:15:26 +00:00
// integral factorial function
template <typename T>
T factorial(const T n)
{
static_assert(std::is_integral<T>::value,
"factorial must me used with an integral argument");
T res = n;
for (T i = n - 1; i != 0; --i)
{
res *= i;
}
return res;
}
2014-04-15 17:30:51 +01:00
// Constants
const double pi = 3.1415926535897932384626433832795028841970;
const double e = 2.7182818284590452353602874713526624977572;
}
/******************************************************************************
* Standard C functions *
******************************************************************************/
#define STDMATH_NAMESPACE StdMath
#define DECL_STD_FUNC(name) \
namespace STDMATH_NAMESPACE\
{\
extern DoubleFunction name;\
}
// Trigonometric functions
DECL_STD_FUNC(cos)
DECL_STD_FUNC(sin)
DECL_STD_FUNC(tan)
DECL_STD_FUNC(acos)
DECL_STD_FUNC(asin)
DECL_STD_FUNC(atan)
DECL_STD_FUNC(atan2)
// Hyperbolic functions
DECL_STD_FUNC(cosh)
DECL_STD_FUNC(sinh)
DECL_STD_FUNC(tanh)
DECL_STD_FUNC(acosh)
DECL_STD_FUNC(asinh)
DECL_STD_FUNC(atanh)
// Exponential and logarithmic functions
DECL_STD_FUNC(exp)
DECL_STD_FUNC(log)
DECL_STD_FUNC(log10)
DECL_STD_FUNC(exp2)
DECL_STD_FUNC(expm1)
DECL_STD_FUNC(log1p)
DECL_STD_FUNC(log2)
// Power functions
DECL_STD_FUNC(pow)
DECL_STD_FUNC(sqrt)
DECL_STD_FUNC(cbrt)
DECL_STD_FUNC(hypot)
// Error and gamma functions
DECL_STD_FUNC(erf)
DECL_STD_FUNC(erfc)
DECL_STD_FUNC(tgamma)
DECL_STD_FUNC(lgamma)
// Rounding and remainder functions
DECL_STD_FUNC(ceil)
DECL_STD_FUNC(floor)
DECL_STD_FUNC(fmod)
DECL_STD_FUNC(trunc)
DECL_STD_FUNC(round)
DECL_STD_FUNC(rint)
DECL_STD_FUNC(nearbyint)
DECL_STD_FUNC(remainder)
// Minimum, maximum, difference functions
DECL_STD_FUNC(fdim)
DECL_STD_FUNC(fmax)
DECL_STD_FUNC(fmin)
// Absolute value
DECL_STD_FUNC(fabs)
2015-11-02 16:17:59 +00:00
/******************************************************************************
* Other functions *
******************************************************************************/
// p-value
namespace MATH_NAMESPACE
{
extern DoubleFunction chi2PValue;
}
END_LATAN_NAMESPACE
#endif // Latan_Math_hpp_