1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-14 01:45:35 +00:00
LatAnalyze/lib/Statistics/StatArray.hpp

340 lines
9.2 KiB
C++
Raw Normal View History

/*
* StatArray.hpp, part of LatAnalyze 3
*
2020-01-13 09:57:06 +00:00
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef Latan_StatArray_hpp_
#define Latan_StatArray_hpp_
2014-03-13 18:51:01 +00:00
#include <LatAnalyze/Global.hpp>
#include <LatAnalyze/Core/Mat.hpp>
2014-03-04 17:16:36 +00:00
#define FOR_STAT_ARRAY(ar, i) \
for (Latan::Index i = -(ar).offset; i < (ar).size(); ++i)
BEGIN_LATAN_NAMESPACE
/******************************************************************************
* Array class with statistics *
******************************************************************************/
2014-03-04 17:16:36 +00:00
template <typename T, Index os = 0>
2016-04-05 15:57:19 +01:00
class StatArray: public Array<T, dynamic, 1>, public IoObject
{
protected:
typedef Array<T, dynamic, 1> Base;
public:
// constructors
StatArray(void);
2014-03-03 14:21:37 +00:00
explicit StatArray(const Index size);
2014-03-17 15:00:59 +00:00
EIGEN_EXPR_CTOR(StatArray, unique_arg(StatArray<T, os>), Base, ArrayExpr)
// destructor
2014-02-20 22:54:11 +00:00
virtual ~StatArray(void) = default;
// access
Index size(void) const;
2014-03-12 19:03:36 +00:00
void resize(const Index size);
// operators
2014-03-03 12:41:48 +00:00
T & operator[](const Index s);
const T & operator[](const Index s) const;
// statistics
void bin(Index binSize);
T sum(const Index pos = 0, const Index n = -1) const;
T meanOld(const Index pos = 0, const Index n = -1) const;
2014-03-12 19:03:36 +00:00
T mean(const Index pos = 0, const Index n = -1) const;
T covarianceOld(const StatArray<T, os> &array) const;
T covariance(const StatArray<T, os> &array) const;
T covarianceMatrixOld(const StatArray<T, os> &array, const Index pos = 0,
2014-03-12 19:03:36 +00:00
const Index n = -1) const;
T varianceOld(void) const;
T variance(void) const;
T varianceMatrixOld(const Index pos = 0, const Index n = -1) const;
T correlationMatrixOld(const Index pos = 0, const Index n = -1) const;
2016-04-05 15:57:19 +01:00
// IO type
virtual IoType getType(void) const;
2014-03-04 17:16:36 +00:00
public:
2016-04-05 15:57:19 +01:00
static constexpr Index offset = os;
};
// reduction operations
namespace StatOp
{
2014-03-12 19:03:36 +00:00
// general templates
template <typename T>
2014-03-12 19:03:36 +00:00
inline T prod(const T &a, const T &b);
template <typename T>
inline T tensProd(const T &v1, const T &v2);
template <typename T>
inline T sum(const T &a, const T &b);
}
// Sample types
2016-04-05 15:57:19 +01:00
const int central = -1;
template <typename T>
2016-04-05 15:57:19 +01:00
using Sample = StatArray<T, 1>;
2014-04-15 17:29:54 +01:00
typedef Sample<double> DSample;
typedef Sample<std::complex<double>> CSample;
/******************************************************************************
* StatArray class template implementation *
******************************************************************************/
// constructors ////////////////////////////////////////////////////////////////
2014-03-04 17:16:36 +00:00
template <typename T, Index os>
StatArray<T, os>::StatArray(void)
: Base(static_cast<typename Base::Index>(os))
{}
2014-03-04 17:16:36 +00:00
template <typename T, Index os>
StatArray<T, os>::StatArray(const Index size)
: Base(static_cast<typename Base::Index>(size + os))
{}
// access //////////////////////////////////////////////////////////////////////
2014-03-04 17:16:36 +00:00
template <typename T, Index os>
Index StatArray<T, os>::size(void) const
{
2014-03-04 17:16:36 +00:00
return Base::size() - os;
}
2014-03-12 19:03:36 +00:00
template <typename T, Index os>
void StatArray<T, os>::resize(const Index size)
{
Base::resize(size + os);
}
// operators ///////////////////////////////////////////////////////////////////
2014-03-04 17:16:36 +00:00
template <typename T, Index os>
T & StatArray<T, os>::operator[](const Index s)
{
2014-03-04 17:16:36 +00:00
return Base::operator[](s + os);
}
2014-03-04 17:16:36 +00:00
template <typename T, Index os>
const T & StatArray<T, os>::operator[](const Index s) const
{
2014-03-04 17:16:36 +00:00
return Base::operator[](s + os);
}
// statistics //////////////////////////////////////////////////////////////////
2014-03-04 17:16:36 +00:00
template <typename T, Index os>
void StatArray<T, os>::bin(Index binSize)
{
Index q = size()/binSize, r = size()%binSize;
for (Index i = 0; i < q; ++i)
{
(*this)[i] = mean(i*binSize, binSize);
}
if (r != 0)
{
(*this)[q] = mean(q*binSize, r);
2014-03-04 17:16:36 +00:00
this->conservativeResize(os + q + 1);
}
else
{
2014-03-04 17:16:36 +00:00
this->conservativeResize(os + q);
}
}
2014-03-04 17:16:36 +00:00
template <typename T, Index os>
T StatArray<T, os>::meanOld(const Index pos, const Index n) const
{
2014-04-08 19:47:09 +01:00
T result = T();
2014-03-12 19:03:36 +00:00
const Index m = (n >= 0) ? n : size();
2014-03-12 19:03:36 +00:00
if (m)
{
result = this->segment(pos+os, m).redux(&StatOp::sum<T>);
}
return result/static_cast<double>(m);
}
2014-03-04 17:16:36 +00:00
template <typename T, Index os>
T StatArray<T, os>::sum(const Index pos, const Index n) const
{
T result;
2014-03-12 19:03:36 +00:00
const Index m = (n >= 0) ? n : size();
result = (*this)[pos];
for (Index i = pos + 1; i < pos + m; ++i)
{
result += (*this)[i];
}
return result;
}
template <typename T, Index os>
T StatArray<T, os>::mean(const Index pos, const Index n) const
{
const Index m = (n >= 0) ? n : size();
return sum(pos, n)/static_cast<double>(m);
}
template <typename T, Index os>
T StatArray<T, os>::covarianceOld(const StatArray<T, os> &array) const
{
T s1, s2, prs, res = T();
const Index m = size();
2014-03-12 19:03:36 +00:00
if (m)
{
auto arraySeg = array.segment(os, m);
auto thisSeg = this->segment(os, m);
2014-03-12 19:03:36 +00:00
s1 = thisSeg.redux(&StatOp::sum<T>);
s2 = arraySeg.redux(&StatOp::sum<T>);
prs = thisSeg.binaryExpr(arraySeg, &StatOp::prod<T>)
.redux(&StatOp::sum<T>);
res = prs - StatOp::prod(s1, s2)/static_cast<double>(m);
2014-03-12 19:03:36 +00:00
}
return res/static_cast<double>(m - 1);
}
2014-03-04 17:16:36 +00:00
template <typename T, Index os>
T StatArray<T, os>::covariance(const StatArray<T, os> &array) const
{
T s1, s2, res;
s1 = array.sum();
s2 = this->sum();
res = StatOp::prod<T>(array[0], (*this)[0]);
for (Index i = 1; i < size(); ++i)
{
res += StatOp::prod<T>(array[i], (*this)[i]);
}
res -= StatOp::prod<T>(s1, s2)/static_cast<double>(size());
res /= static_cast<double>(size() - 1);
return res;
}
template <typename T, Index os>
T StatArray<T, os>::covarianceMatrixOld(const StatArray<T, os> &array,
2014-03-12 19:03:36 +00:00
const Index pos, const Index n) const
{
2014-04-08 19:47:09 +01:00
T s1, s2, prs, res = T();
2014-03-12 19:03:36 +00:00
const Index m = (n >= 0) ? n : size();
2014-03-12 19:03:36 +00:00
if (m)
{
2014-03-12 19:03:36 +00:00
auto arraySeg = array.segment(pos+os, m);
auto thisSeg = this->segment(pos+os, m);
s1 = thisSeg.redux(&StatOp::sum<T>);
s2 = arraySeg.redux(&StatOp::sum<T>);
prs = thisSeg.binaryExpr(arraySeg, &StatOp::tensProd<T>)
.redux(&StatOp::sum<T>);
res = prs - StatOp::tensProd(s1, s2)/static_cast<double>(m);
}
2014-03-12 19:03:36 +00:00
return res/static_cast<double>(m - 1);
}
template <typename T, Index os>
T StatArray<T, os>::variance(void) const
{
return covariance(*this);
}
template <typename T, Index os>
T StatArray<T, os>::varianceOld(void) const
2014-03-12 19:03:36 +00:00
{
return covarianceOld(*this);
}
2014-03-04 17:16:36 +00:00
template <typename T, Index os>
T StatArray<T, os>::varianceMatrixOld(const Index pos, const Index n) const
{
return covarianceMatrixOld(*this, pos, n);
}
template <typename T, Index os>
T StatArray<T, os>::correlationMatrixOld(const Index pos, const Index n) const
{
T res = varianceMatrixOld(pos, n);
T invDiag(res.rows(), 1);
invDiag = res.diagonal();
invDiag = invDiag.cwiseInverse().cwiseSqrt();
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
return res;
}
// reduction operations ////////////////////////////////////////////////////////
namespace StatOp
{
template <typename T>
inline void zero(T &a)
{
a = 0.;
}
2015-06-15 13:59:10 +01:00
template <typename T>
inline T sum(const T &a, const T &b)
{
return a + b;
}
2015-06-15 13:59:10 +01:00
template <typename T>
inline T prod(const T &a, const T &b)
{
return a*b;
}
2014-03-12 19:03:36 +00:00
2015-06-15 13:59:10 +01:00
template <typename T>
inline T tensProd(const T &v1 __dumb, const T &v2 __dumb)
2015-06-15 13:59:10 +01:00
{
LATAN_ERROR(Implementation,
"tensorial product not implemented for this type");
}
2015-06-15 13:59:10 +01:00
template <>
inline Mat<double> prod(const Mat<double> &a, const Mat<double> &b)
{
return a.cwiseProduct(b);
}
2014-03-12 19:03:36 +00:00
2015-06-15 13:59:10 +01:00
template <>
inline Mat<double> tensProd(const Mat<double> &v1,
const Mat<double> &v2)
2014-03-12 19:03:36 +00:00
{
2016-04-20 03:21:05 +01:00
if ((v1.cols() != 1) or (v2.cols() != 1))
2015-06-15 13:59:10 +01:00
{
LATAN_ERROR(Size,
"tensorial product is only valid with column vectors");
}
return v1*v2.transpose();
2014-03-12 19:03:36 +00:00
}
}
2016-04-05 15:57:19 +01:00
// IO type /////////////////////////////////////////////////////////////////////
template <typename T, Index os>
IoObject::IoType StatArray<T, os>::getType(void) const
{
return IoType::noType;
}
END_LATAN_NAMESPACE
#endif // Latan_StatArray_hpp_