1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 08:55:37 +00:00
LatAnalyze/latan/MathInterpreter.cpp

519 lines
13 KiB
C++
Raw Normal View History

/*
* MathInterpreter.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2014 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <latan/MathInterpreter.hpp>
#include <latan/includes.hpp>
using namespace std;
using namespace Latan;
/******************************************************************************
* Instruction set *
******************************************************************************/
#define CODE_WIDTH 6
#define CODE_MOD setw(CODE_WIDTH) << left
// Instruction operator ////////////////////////////////////////////////////////
ostream &Latan::operator<<(ostream& out, const Instruction& ins)
{
ins.print(out);
return out;
}
// Push constructors ///////////////////////////////////////////////////////////
Push::Push(const double val)
: type_(ArgType::Constant)
, val_(val)
, name_("")
{}
Push::Push(const string &name)
: type_(ArgType::Variable)
, val_(0.0)
, name_(name)
{}
// Push execution //////////////////////////////////////////////////////////////
void Push::operator()(RunContext &context) const
{
if (type_ == ArgType::Constant)
{
context.dStack.push(val_);
}
else
{
try
{
context.dStack.push(context.vTable.at(name_));
}
catch (out_of_range)
{
LATAN_ERROR(Range, "unknown variable '" + name_ + "'");
}
}
context.insIndex++;
}
// Push print //////////////////////////////////////////////////////////////////
void Push::print(ostream &out) const
{
out << CODE_MOD << "push";
if (type_ == ArgType::Constant)
{
out << CODE_MOD << val_;
}
else
{
out << CODE_MOD << name_;
}
}
// Pop constructor /////////////////////////////////////////////////////////////
Pop::Pop(const string &name)
: name_(name)
{}
// Pop execution ///////////////////////////////////////////////////////////////
void Pop::operator()(RunContext &context) const
{
if (!name_.empty())
{
context.vTable[name_] = context.dStack.top();
}
context.dStack.pop();
context.insIndex++;
}
// Pop print ///////////////////////////////////////////////////////////////////
void Pop::print(ostream &out) const
{
out << CODE_MOD << "pop" << CODE_MOD << name_;
}
// Store constructor ///////////////////////////////////////////////////////////
Store::Store(const string &name)
: name_(name)
{}
// Store execution /////////////////////////////////////////////////////////////
void Store::operator()(RunContext &context) const
{
if (!name_.empty())
{
context.vTable[name_] = context.dStack.top();
}
context.insIndex++;
}
// Store print /////////////////////////////////////////////////////////////////
void Store::print(ostream &out) const
{
out << CODE_MOD << "store" << CODE_MOD << name_;
}
// Call constructor ////////////////////////////////////////////////////////////
Call::Call(const string &name)
: name_(name)
{}
// Call execution //////////////////////////////////////////////////////////////
void Call::operator()(RunContext &context) const
{
try
{
context.dStack.push((*context.fTable.at(name_))(context.dStack));
}
catch (out_of_range)
{
LATAN_ERROR(Range, "unknown function '" + name_ + "'");
}
context.insIndex++;
}
// Call print //////////////////////////////////////////////////////////////////
void Call::print(ostream &out) const
{
out << CODE_MOD << "call" << CODE_MOD << name_;
}
// Math operations /////////////////////////////////////////////////////////////
#define DEF_OP(name, nArg, exp, insName)\
void name::operator()(RunContext &context) const\
{\
double x[nArg];\
for (int i = 0; i < nArg; ++i)\
{\
x[nArg-1-i] = context.dStack.top();\
context.dStack.pop();\
}\
context.dStack.push(exp);\
context.insIndex++;\
}\
void name::print(ostream &out) const\
{\
out << CODE_MOD << insName;\
}
DEF_OP(Neg, 1, -x[0], "neg")
DEF_OP(Add, 2, x[0] + x[1], "add")
DEF_OP(Sub, 2, x[0] - x[1], "sub")
DEF_OP(Mul, 2, x[0]*x[1], "mul")
DEF_OP(Div, 2, x[0]/x[1], "div")
DEF_OP(Pow, 2, pow(x[0],x[1]), "pow")
/******************************************************************************
* ExprNode implementation *
******************************************************************************/
// ExprNode constructors ///////////////////////////////////////////////////////
ExprNode::ExprNode(const string &name)
: name_(name)
, parent_(nullptr)
{}
// ExprNode access /////////////////////////////////////////////////////////////
const string &ExprNode::getName(void) const
{
return name_;
}
unsigned int ExprNode::getNArg(void) const
{
return static_cast<unsigned int>(arg_.size());
}
const ExprNode * ExprNode::getParent(void) const
{
return parent_;
}
unsigned int ExprNode::getLevel(void) const
{
if (getParent())
{
return getParent()->getLevel() + 1;
}
else
{
return 0;
}
}
void ExprNode::setName(const std::string &name)
{
name_ = name;
}
void ExprNode::pushArg(ExprNode *node)
{
if (node)
{
node->parent_ = this;
arg_.push_back(unique_ptr<ExprNode>(node));
}
}
// ExprNode operators //////////////////////////////////////////////////////////
const ExprNode &ExprNode::operator[](const unsigned int i) const
{
return *arg_[i];
}
ostream &Latan::operator<<(ostream &out, const ExprNode &n)
{
unsigned int level = n.getLevel();
for (unsigned int i = 0; i <= level; ++i)
{
if (i == level)
{
out << "_";
}
else if (i == level - 1)
{
out << "|";
}
else
{
out << " ";
}
}
out << " " << n.getName() << endl;
for (unsigned int i = 0; i < n.getNArg(); ++i)
{
out << n[i];
}
return out;
}
#define PUSH_INS(program, type, ...) \
program.push_back(unique_ptr<type>(new type(__VA_ARGS__)))
// VarNode compile /////////////////////////////////////////////////////////////
void VarNode::compile(Program &program) const
{
PUSH_INS(program, Push, getName());
}
// CstNode compile /////////////////////////////////////////////////////////////
void CstNode::compile(Program &program) const
{
PUSH_INS(program, Push, strTo<double>(getName()));
}
// SemicolonNode compile ///////////////////////////////////////////////////////
void SemicolonNode::compile(Program &program) const
{
auto &n = *this;
for (unsigned int i = 0; i < getNArg(); ++i)
{
bool isAssign = isDerivedFrom<AssignNode>(&n[i]);
bool isSemiColumn = isDerivedFrom<SemicolonNode>(&n[i]);
bool isKeyword = isDerivedFrom<KeywordNode>(&n[i]);
if (isAssign||isSemiColumn||isKeyword)
{
n[i].compile(program);
}
}
}
// AssignNode compile //////////////////////////////////////////////////////////
void AssignNode::compile(Program &program) const
{
auto &n = *this;
if (isDerivedFrom<VarNode>(&n[0]))
{
bool hasSemicolonParent = isDerivedFrom<SemicolonNode>(getParent());
n[1].compile(program);
if (hasSemicolonParent)
{
PUSH_INS(program, Pop, n[0].getName());
}
else
{
PUSH_INS(program, Store, n[0].getName());
}
}
else
{
LATAN_ERROR(Compilation, "invalid LHS for '='");
}
}
// MathOpNode compile //////////////////////////////////////////////////////////
#define IFNODE(name, nArg) if ((n.getName() == (name))&&(n.getNArg() == nArg))
#define ELIFNODE(name, nArg) else IFNODE(name, nArg)
#define ELSE else
void MathOpNode::compile(Program &program) const
{
auto &n = *this;
for (unsigned int i = 0; i < n.getNArg(); ++i)
{
n[i].compile(program);
}
IFNODE("-", 1) PUSH_INS(program, Neg,);
ELIFNODE("+", 2) PUSH_INS(program, Add,);
ELIFNODE("-", 2) PUSH_INS(program, Sub,);
ELIFNODE("*", 2) PUSH_INS(program, Mul,);
ELIFNODE("/", 2) PUSH_INS(program, Div,);
ELIFNODE("^", 2) PUSH_INS(program, Pow,);
ELSE LATAN_ERROR(Compilation, "unknown operator '" + getName() + "'");
}
// FuncNode compile ////////////////////////////////////////////////////////////
void FuncNode::compile(Program &program) const
{
auto &n = *this;
for (unsigned int i = 0; i < n.getNArg(); ++i)
{
n[i].compile(program);
}
PUSH_INS(program, Call, getName());
}
// ReturnNode compile ////////////////////////////////////////////////////////////
void ReturnNode::compile(Program &program) const
{
auto &n = *this;
n[0].compile(program);
program.push_back(nullptr);
}
/******************************************************************************
* MathInterpreter implementation *
******************************************************************************/
// MathParserState constructor /////////////////////////////////////////////////
MathInterpreter::MathParserState::MathParserState
(istream *stream, string *name, std::unique_ptr<ExprNode> *data)
: ParserState<std::unique_ptr<ExprNode>>(stream, name, data)
{
initScanner();
}
// MathParserState destructor //////////////////////////////////////////////////
MathInterpreter::MathParserState::~MathParserState(void)
{
destroyScanner();
}
// constructors ////////////////////////////////////////////////////////////////
MathInterpreter::MathInterpreter(void)
: code_(nullptr)
, codeName_("<no_code>")
, state_(nullptr)
, root_(nullptr)
, status_(Status::none)
{}
MathInterpreter::MathInterpreter(const std::string &code)
: code_(nullptr)
, codeName_("<string>")
, state_(nullptr)
, root_(nullptr)
, status_(Status::none)
{
setCode(code);
}
// destructor //////////////////////////////////////////////////////////////////
MathInterpreter::~MathInterpreter(void)
{}
// access //////////////////////////////////////////////////////////////////////
const Instruction * MathInterpreter::operator[](const unsigned int i) const
{
return program_[i].get();
}
const ExprNode * MathInterpreter::getAST(void) const
{
return root_.get();
}
void MathInterpreter::push(const Instruction *i)
{
program_.push_back(unique_ptr<const Instruction>(i));
}
// initialization //////////////////////////////////////////////////////////////
void MathInterpreter::setCode(const std::string &code)
{
if (status_)
{
reset();
}
code_.reset(new stringstream(code));
codeName_ = "<string>";
state_.reset(new MathParserState(code_.get(), &codeName_, &root_));
program_.clear();
status_ = Status::initialised;
}
void MathInterpreter::reset(void)
{
code_.reset();
codeName_ = "<no_code>";
state_.reset();
root_.reset();
program_.clear();
status_ = 0;
}
// parser //////////////////////////////////////////////////////////////////////
// Bison/Flex parser declaration
int _math_parse(MathInterpreter::MathParserState *state);
void MathInterpreter::parse(void)
{
_math_parse(state_.get());
}
// interpreter /////////////////////////////////////////////////////////////////
void MathInterpreter::compile(void)
{
bool gotReturn = false;
if (!(status_ & Status::parsed))
{
parse();
status_ |= Status::parsed;
status_ -= status_ & Status::compiled;
}
if (root_)
{
root_->compile(program_);
for (unsigned int i = 0; i < program_.size(); ++i)
{
if (!program_[i])
{
gotReturn = true;
program_.resize(i);
program_.shrink_to_fit();
break;
}
}
}
if (!root_||!gotReturn)
{
LATAN_ERROR(Syntax, "expected 'return' in program '" + codeName_ + "'");
}
status_ |= Status::compiled;
}
// execution ///////////////////////////////////////////////////////////////////
void MathInterpreter::operator()(RunContext &context)
{
if (!(status_ & Status::compiled))
{
compile();
}
execute(context);
}
void MathInterpreter::execute(RunContext &context) const
{
context.insIndex = 0;
while (context.insIndex != program_.size())
{
(*(program_[context.insIndex]))(context);
}
}
// IO //////////////////////////////////////////////////////////////////////////
ostream &Latan::operator<<(ostream &out, const MathInterpreter &program)
{
for (unsigned int i = 0; i < program.program_.size(); ++i)
{
out << *(program.program_[i]) << endl;
}
return out;
}