1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-15 02:05:36 +00:00
LatAnalyze/lib/Physics/CorrelatorFitter.cpp

459 lines
12 KiB
C++
Raw Normal View History

/*
* CorrelatorFitter.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/Physics/CorrelatorFitter.hpp>
#include <LatAnalyze/includes.hpp>
using namespace std;
using namespace Latan;
2020-01-28 17:55:47 +00:00
/******************************************************************************
* Correlator models *
******************************************************************************/
DoubleModel CorrelatorModels::makeExpModel(const Index nState)
{
DoubleModel mod;
mod.setFunction([nState](const double *x, const double *p)
{
double res = 0.;
for (unsigned int i = 0; i < nState; ++i)
{
res += p[2*i + 1]*exp(-p[2*i]*x[0]);
}
return res;
}, 1, 2*nState);
for (unsigned int i = 0; i < nState; ++i)
{
mod.parName().setName(2*i, "E_" + strFrom(i));
mod.parName().setName(2*i + 1, "Z_" + strFrom(i));
}
return mod;
}
DoubleModel CorrelatorModels::makeCoshModel(const Index nState, const Index nt)
{
DoubleModel mod;
mod.setFunction([nState, nt](const double *x, const double *p)
{
double res = 0.;
for (unsigned int i = 0; i < nState; ++i)
{
res += p[2*i + 1]*(exp(-p[2*i]*x[0]) + exp(-p[2*i]*(nt - x[0])));
}
return res;
}, 1, 2*nState);
for (unsigned int i = 0; i < nState; ++i)
{
mod.parName().setName(2*i, "E_" + strFrom(i));
mod.parName().setName(2*i + 1, "Z_" + strFrom(i));
}
return mod;
}
DoubleModel CorrelatorModels::makeSinhModel(const Index nState, const Index nt)
{
DoubleModel mod;
mod.setFunction([nState, nt](const double *x, const double *p)
{
double res = 0.;
for (unsigned int i = 0; i < nState; ++i)
{
res += p[2*i + 1]*(- exp(-p[2*i]*x[0]) + exp(-p[2*i]*(nt - x[0])));
}
return res;
}, 1, 2*nState);
for (unsigned int i = 0; i < nState; ++i)
{
mod.parName().setName(2*i, "E_" + strFrom(i));
mod.parName().setName(2*i + 1, "Z_" + strFrom(i));
}
return mod;
}
DoubleModel CorrelatorModels::makeConstModel(void)
{
DoubleModel mod;
mod.setFunction([](const double *x, const double *p __dumb)
{
return p[0];
}, 1, 1);
mod.parName().setName(0, "cst");
return mod;
}
DoubleModel CorrelatorModels::makeLinearModel(void)
{
DoubleModel mod;
mod.setFunction([](const double *x, const double *p)
{
return p[1] + p[0]*x[0];
}, 1, 2);
return mod;
}
CorrelatorModels::ModelPar CorrelatorModels::parseModel(const string s)
{
smatch sm;
ModelPar par;
if (regex_match(s, sm, regex("exp([0-9]+)")))
{
par.type = CorrelatorType::exp;
2020-01-28 17:34:37 +00:00
par.nState = strTo<Index>(sm[1].str());
}
else if (regex_match(s, sm, regex("cosh([0-9]+)")))
{
par.type = CorrelatorType::cosh;
2020-01-28 17:34:37 +00:00
par.nState = strTo<Index>(sm[1].str());
}
else if (regex_match(s, sm, regex("sinh([0-9]+)")))
{
par.type = CorrelatorType::sinh;
2020-01-28 17:34:37 +00:00
par.nState = strTo<Index>(sm[1].str());
}
else if (s == "linear")
{
par.type = CorrelatorType::linear;
par.nState = 1;
}
else if (s == "cst")
{
par.type = CorrelatorType::cst;
par.nState = 1;
}
else
{
par.type = CorrelatorType::undefined;
par.nState = 0;
}
return par;
}
DoubleModel CorrelatorModels::makeModel(const CorrelatorModels::ModelPar par,
const Index nt)
{
switch (par.type)
{
case CorrelatorType::undefined:
LATAN_ERROR(Argument, "correlator type is undefined");
break;
case CorrelatorType::exp:
return makeExpModel(par.nState);
break;
case CorrelatorType::cosh:
return makeCoshModel(par.nState, nt);
break;
case CorrelatorType::sinh:
return makeSinhModel(par.nState, nt);
break;
case CorrelatorType::linear:
return makeLinearModel();
break;
case CorrelatorType::cst:
return makeConstModel();
break;
}
}
DVec CorrelatorModels::parameterGuess(const DMatSample &corr,
const ModelPar par)
{
DVec init;
2020-01-28 17:34:37 +00:00
Index nt = corr[central].size();
switch (par.type)
{
case CorrelatorType::undefined:
LATAN_ERROR(Argument, "correlator type is undefined");
break;
case CorrelatorType::exp:
init.resize(2*par.nState);
init(0) = log(corr[central](nt/4)/corr[central](nt/4 + 1));
init(1) = corr[central](nt/4)/(exp(-init(0)*nt/4));
for (Index p = 2; p < init.size(); p += 2)
{
init(p) = 2*init(p - 2);
init(p + 1) = init(p - 1)/2.;
}
break;
case CorrelatorType::cosh:
init.resize(2*par.nState);
init(0) = log(corr[central](nt/4)/corr[central](nt/4 + 1));
init(1) = corr[central](nt/4)/(exp(-init(0)*nt/4) + exp(-init(0)*3*nt/4));
for (Index p = 2; p < init.size(); p += 2)
{
init(p) = 2*init(p - 2);
init(p + 1) = init(p - 1)/2.;
}
break;
case CorrelatorType::sinh:
init.resize(2*par.nState);
init(0) = log(corr[central](nt/4)/corr[central](nt/4 + 1));
init(1) = corr[central](nt/4)/( -exp(-init(0)*nt/4) +exp(-init(0)*3*nt/4));
for (Index p = 2; p < init.size(); p += 2)
{
init(p) = 2*init(p - 2);
init(p + 1) = init(p - 1)/2.;
}
break;
case CorrelatorType::linear:
init.resize(2);
init(0) = corr[central](nt/4) - corr[central](nt/4 + 1, 0);
init(1) = corr[central](nt/4, 0) + nt/4*init(0);
break;
case CorrelatorType::cst:
init.resize(1);
init(0) = corr[central](nt/4);
break;
default:
break;
}
return init;
}
2020-02-02 18:43:14 +00:00
/******************************************************************************
* Correlator utilities *
******************************************************************************/
DMatSample CorrelatorUtils::shift(const DMatSample &c, const Index ts)
{
if (ts != 0)
{
const Index nt = c[central].rows();
DMatSample buf = c;
FOR_STAT_ARRAY(buf, s)
{
for (Index t = 0; t < nt; ++t)
{
buf[s]((t - ts + nt)%nt) = c[s](t);
}
}
return buf;
}
else
{
return c;
}
}
DMatSample CorrelatorUtils::fold(const DMatSample &c, const CorrelatorModels::ModelPar &par)
2020-02-02 18:43:14 +00:00
{
const Index nt = c[central].rows();
DMatSample buf = c;
int sign;
bool fold = false;
switch (par.type)
{
case CorrelatorType::cosh:
case CorrelatorType::cst:
sign = 1;
fold = true;
break;
case CorrelatorType::sinh:
sign = -1;
fold = true;
break;
case CorrelatorType::linear:
cout << "Linear model is asymmetric: will not fold." << endl;
break;
default:
break;
}
2020-02-02 18:43:14 +00:00
if (fold)
2020-02-02 18:43:14 +00:00
{
FOR_STAT_ARRAY(buf, s)
2020-02-02 18:43:14 +00:00
{
for (Index t = 0; t < nt; ++t)
{
buf[s](t) = 0.5*(c[s](t) + sign*c[s]((nt - t) % nt));
}
2020-02-02 18:43:14 +00:00
}
}
return buf;
}
DMatSample CorrelatorUtils::fourierTransform(const DMatSample &c, FFT &fft,
const unsigned int dir)
{
const Index nSample = c.size();
const Index nt = c[central].rows();
bool isComplex = (c[central].cols() > 1);
CMatSample buf(nSample, nt, 1);
DMatSample out(nSample, nt, 2);
fft.resize(nt);
FOR_STAT_ARRAY(buf, s)
{
buf[s].real() = c[s].col(0);
if (isComplex)
{
buf[s].imag() = c[s].col(1);
}
else
{
buf[s].imag() = DVec::Constant(nt, 0.);
}
fft(buf[s], dir);
out[s].col(0) = buf[s].real();
out[s].col(1) = buf[s].imag();
}
return out;
}
2020-01-28 17:55:47 +00:00
/******************************************************************************
* CorrelatorFitter implementation *
******************************************************************************/
// constructors ////////////////////////////////////////////////////////////////
CorrelatorFitter::CorrelatorFitter(const DMatSample &corr)
{
setCorrelator(corr);
}
CorrelatorFitter::CorrelatorFitter(const std::vector<DMatSample> &corr)
{
setCorrelators(corr);
}
2020-01-28 17:55:47 +00:00
// access //////////////////////////////////////////////////////////////////////
2020-01-28 17:34:37 +00:00
XYSampleData & CorrelatorFitter::data(void)
{
return *data_;
}
void CorrelatorFitter::setCorrelator(const DMatSample &corr)
{
std::vector<DMatSample> vec;
vec.push_back(corr);
setCorrelators(vec);
}
void CorrelatorFitter::setCorrelators(const std::vector<DMatSample> &corr)
{
Index nSample = corr[0].size();
DMatSample tVec(nSample);
std::vector<const DMatSample *> ptVec;
nt_ = corr[0][central].rows();
tVec.fill(DVec::LinSpaced(nt_, 0, nt_ - 1));
for (auto &c: corr)
{
ptVec.push_back(&c);
}
data_.reset(new XYSampleData(corr[0].size()));
data_->addXDim(nt_, "t/a", true);
for (unsigned int i = 0; i < corr.size(); ++i)
{
data_->addYDim("C_" + strFrom(i) + "(t)");
}
data_->setUnidimData(tVec, ptVec);
model_.resize(corr.size());
range_.resize(corr.size(), make_pair(0, nt_ - 1));
thinning_.resize(corr.size(), 1);
}
void CorrelatorFitter::setModel(const DoubleModel &model, const Index i)
{
model_[i] = model;
}
const DoubleModel & CorrelatorFitter::getModel(const Index i) const
{
return model_.at(i);
}
void CorrelatorFitter::setFitRange(const Index tMin, const Index tMax,
const Index i)
{
range_[i] = make_pair(tMin, tMax);
refreshRanges();
}
void CorrelatorFitter::setCorrelation(const bool isCorrelated, const Index i,
const Index j)
{
data_->assumeYYCorrelated(isCorrelated, i, j);
}
2020-01-28 17:55:47 +00:00
DMat CorrelatorFitter::getVarianceMatrix(void) const
{
return data_->getFitVarMat();
}
void CorrelatorFitter::setThinning(const Index thinning, const Index i)
{
thinning_[i] = thinning;
refreshRanges();
}
2020-01-28 17:55:47 +00:00
// fit functions ///////////////////////////////////////////////////////////////
SampleFitResult CorrelatorFitter::fit(Minimizer &minimizer, const DVec &init)
{
vector<Minimizer *> vecPt = {&minimizer};
return fit(vecPt, init);
}
SampleFitResult CorrelatorFitter::fit(vector<Minimizer *> &minimizer,
const DVec &init)
{
vector<const DoubleModel *> vecPt(model_.size());
for (unsigned int i = 0; i < model_.size(); ++i)
{
vecPt[i] = &(model_[i]);
}
return data_->fit(minimizer, init, vecPt);
}
2020-01-28 17:55:47 +00:00
// internal function to refresh fit ranges /////////////////////////////////////
void CorrelatorFitter::refreshRanges(void)
{
for (unsigned int i = 0; i < range_.size(); ++i)
for (Index t = 0; t < nt_; ++t)
{
data_->fitPoint((t >= range_[i].first) and (t <= range_[i].second)
and ((t - range_[i].first) % thinning_[i] == 0), t);
}
}