1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-15 10:15:35 +00:00
LatAnalyze/lib/Numerical/GslMinimizer.cpp

362 lines
12 KiB
C++
Raw Normal View History

2016-04-12 20:10:37 +01:00
/*
* GslMinimizer.cpp, part of LatAnalyze
*
2020-01-13 09:57:06 +00:00
* Copyright (C) 2013 - 2020 Antonin Portelli
2016-04-12 20:10:37 +01:00
*
* LatAnalyze is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/Numerical/GslMinimizer.hpp>
2016-04-12 20:10:37 +01:00
#include <LatAnalyze/includes.hpp>
#include <LatAnalyze/Core/Math.hpp>
2016-04-12 20:10:37 +01:00
#include <gsl/gsl_multimin.h>
#include <gsl/gsl_blas.h>
using namespace std;
using namespace Latan;
/******************************************************************************
* GslMinimizer implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
GslMinimizer::GslMinimizer(const Algorithm algorithm)
{
setAlgorithm(algorithm);
der_.setOrder(1, 1);
}
// access //////////////////////////////////////////////////////////////////////
GslMinimizer::Algorithm GslMinimizer::getAlgorithm(void) const
{
return algorithm_;
}
void GslMinimizer::setAlgorithm(const Algorithm algorithm)
{
algorithm_ = algorithm;
}
bool GslMinimizer::supportLimits(void) const
{
return false;
}
// test ////////////////////////////////////////////////////////////////////////
bool GslMinimizer::isDerAlgorithm(const Algorithm algorithm)
{
return (algorithm <= Algorithm::lastDerAlg);
}
// minimization ////////////////////////////////////////////////////////////////
const DVec & GslMinimizer::operator()(const DoubleFunction &f)
{
DVec &x = getState();
// resize minimizer state to match function number of arguments
if (f.getNArg() != x.size())
{
resize(f.getNArg());
}
// set function data
GslFuncData data;
der_.setFunction(f);
data.f = &f;
data.d = &der_;
// set initial position
gsl_vector *gslX = gsl_vector_alloc(getDim());
for (Index i = 0; i < getDim(); ++i)
{
gsl_vector_set(gslX, i, x(i));
}
// minimization
int status;
if (isDerAlgorithm(getAlgorithm()))
{
// set function
gsl_multimin_function_fdf gslFunc;
gslFunc.n = getDim();
gslFunc.f = &fWrapper;
gslFunc.df = &dfWrapper;
gslFunc.fdf = &fdfWrapper;
gslFunc.params = &data;
// create and set minimizer
const gsl_multimin_fdfminimizer_type *gslAlg;
gsl_multimin_fdfminimizer *gslMin;
switch (getAlgorithm())
{
case Algorithm::cgFR:
gslAlg = gsl_multimin_fdfminimizer_conjugate_fr;
break;
case Algorithm::cgPR:
gslAlg = gsl_multimin_fdfminimizer_conjugate_pr;
break;
case Algorithm::bfgs:
gslAlg = gsl_multimin_fdfminimizer_vector_bfgs;
break;
case Algorithm::bfgs2:
gslAlg = gsl_multimin_fdfminimizer_vector_bfgs2;
break;
case Algorithm::steepDesc:
gslAlg = gsl_multimin_fdfminimizer_vector_bfgs2;
break;
default:
LATAN_ERROR(Argument, "unknow GSL minization algorithm "
+ strFrom(static_cast<int>(getAlgorithm())));
break;
}
gslMin = gsl_multimin_fdfminimizer_alloc(gslAlg, getDim());
// minimize
unsigned int pass = 0, it;
double dxRel;
do
{
pass++;
gsl_multimin_fdfminimizer_set(gslMin, &gslFunc, gslX, 0.01, 0.001);
if (getVerbosity() >= Verbosity::Normal)
{
cout << "========== GSL minimization, pass #" << pass;
cout << " ==========" << endl;
cout << "Algorithm: " << getAlgorithmName(getAlgorithm());
cout << endl;
cout << "Max eval.= " << getMaxIteration();
cout << " -- Precision= " << getPrecision() << endl;
printf("Starting f(x)= %.10e\n", f(x));
}
it = 0;
do
{
it++;
gsl_multimin_fdfminimizer_iterate(gslMin);
dxRel = gsl_blas_dnrm2(gslMin->dx)/gsl_blas_dnrm2(gslMin->x);
status = (dxRel < getPrecision()) ? GSL_SUCCESS : GSL_CONTINUE;
if (getVerbosity() >= Verbosity::Debug)
{
printf("iteration %4d: f= %.10e dxrel= %.10e eval= %d\n",
it, gslMin->f, dxRel, data.evalCount);
}
} while (status == GSL_CONTINUE and
(data.evalCount < getMaxIteration()));
if (getVerbosity() >= Verbosity::Normal)
{
printf("Found minimum %.10e at:\n", gslMin->f);
for (Index i = 0; i < x.size(); ++i)
{
printf("%8s= %.10e\n", f.varName().getName(i).c_str(),
gsl_vector_get(gslMin->x, i));
}
cout << "after " << data.evalCount << " evaluations" << endl;
cout << "Minimization ended with code " << status;
cout << endl;
}
data.evalCount = 0;
for (Index i = 0; i < getDim(); ++i)
{
gsl_vector_set(gslX, i, gsl_vector_get(gslMin->x, i));
}
} while (status != GSL_SUCCESS and (pass < getMaxPass()));
// deallocate GSL minimizer
gsl_multimin_fdfminimizer_free(gslMin);
}
else
{
// set function
gsl_multimin_function gslFunc;
gslFunc.n = getDim();
gslFunc.f = &fWrapper;
gslFunc.params = &data;
// create and set minimizer
const gsl_multimin_fminimizer_type *gslAlg;
gsl_multimin_fminimizer *gslMin;
switch (getAlgorithm())
{
case Algorithm::simplex:
gslAlg = gsl_multimin_fminimizer_nmsimplex;
break;
case Algorithm::simplex2:
gslAlg = gsl_multimin_fminimizer_nmsimplex2;
break;
case Algorithm::simplex2R:
gslAlg = gsl_multimin_fminimizer_nmsimplex2rand;
break;
default:
LATAN_ERROR(Argument, "unknow GSL minization algorithm "
+ strFrom(static_cast<int>(getAlgorithm())));
break;
}
gslMin = gsl_multimin_fminimizer_alloc(gslAlg, getDim());
// minimize
unsigned int pass = 0, it;
gsl_vector *step = gsl_vector_alloc(getDim());
double relSize;
gsl_vector_set_all(step, 0.01);
do
{
pass++;
gsl_multimin_fminimizer_set(gslMin, &gslFunc, gslX, step);
if (getVerbosity() >= Verbosity::Normal)
{
cout << "========== GSL minimization, pass #" << pass;
cout << " ==========" << endl;
cout << "Algorithm: " << getAlgorithmName(getAlgorithm());
cout << endl;
cout << "Max eval.= " << getMaxIteration();
cout << " -- Precision= " << getPrecision() << endl;
printf("Starting f(x)= %.10e\n", f(x));
}
it = 0;
do
{
it++;
gsl_multimin_fminimizer_iterate(gslMin);
relSize = Math::pow<2>(gslMin->size)/gsl_blas_dnrm2(gslMin->x);
status = (relSize < getPrecision()) ? GSL_SUCCESS
: GSL_CONTINUE;
if (getVerbosity() >= Verbosity::Debug)
{
printf("iteration %4d: f= %.10e relSize= %.10e eval= %d\n",
it, gslMin->fval, relSize, data.evalCount);
}
} while (status == GSL_CONTINUE and
(data.evalCount < getMaxIteration()));
if (getVerbosity() >= Verbosity::Normal)
{
printf("Found minimum %.10e at:\n", gslMin->fval);
for (Index i = 0; i < x.size(); ++i)
{
printf("%8s= %.10e\n", f.varName().getName(i).c_str(),
gsl_vector_get(gslMin->x, i));
}
cout << "after " << data.evalCount << " evaluations" << endl;
cout << "Minimization ended with code " << status;
cout << endl;
}
data.evalCount = 0;
for (Index i = 0; i < getDim(); ++i)
{
gsl_vector_set(gslX, i, gsl_vector_get(gslMin->x, i));
}
} while (status != GSL_SUCCESS and (pass < getMaxPass()));
// deallocate GSL minimizer
gsl_multimin_fminimizer_free(gslMin);
gsl_vector_free(step);
}
if (status != GSL_SUCCESS)
{
LATAN_WARNING("invalid minimum: maximum number of call reached");
}
// save final result
for (Index i = 0; i < getDim(); ++i)
{
x(i) = gsl_vector_get(gslX, i);
}
// deallocate GSL state and return
gsl_vector_free(gslX);
return x;
}
// function wrappers ///////////////////////////////////////////////////////////
double GslMinimizer::fWrapper(const gsl_vector *x, void *vdata)
{
GslFuncData &data = *static_cast<GslFuncData *>(vdata);
data.evalCount++;
return (*data.f)(x->data);
}
void GslMinimizer::dfWrapper(const gsl_vector *x, void *vdata, gsl_vector * df)
{
GslFuncData &data = *static_cast<GslFuncData *>(vdata);
const unsigned int n = data.f->getNArg();
for (unsigned int i = 0; i < n; ++i)
{
data.d->setDir(i);
gsl_vector_set(df, i, (*(data.d))(x->data));
}
data.evalCount += data.d->getNPoint()*n;
}
void GslMinimizer::fdfWrapper(const gsl_vector *x, void *vdata, double *f,
gsl_vector * df)
{
GslFuncData &data = *static_cast<GslFuncData *>(vdata);
const unsigned int n = data.f->getNArg();
for (unsigned int i = 0; i < n; ++i)
{
data.d->setDir(i);
gsl_vector_set(df, i, (*(data.d))(x->data));
}
*f = (*data.f)(x->data);
data.evalCount += data.d->getNPoint()*n + 1;
}
// algorithm names /////////////////////////////////////////////////////////////
string GslMinimizer::getAlgorithmName(const Algorithm algorithm)
{
switch (algorithm)
{
case Algorithm::cgFR:
return "Fletcher-Reeves conjugate gradient";
break;
case Algorithm::cgPR:
return "Polak-Ribiere conjugate gradient";
break;
case Algorithm::bfgs:
return "Broyden-Fletcher-Goldfarb-Shanno";
break;
case Algorithm::bfgs2:
return "improved Broyden-Fletcher-Goldfarb-Shanno";
break;
case Algorithm::steepDesc:
return "steepest descent";
break;
case Algorithm::simplex:
return "Nelder-Mead simplex";
break;
case Algorithm::simplex2:
return "improved Nelder-Mead simplex";
break;
case Algorithm::simplex2R:
return "improved Nelder-Mead simplex with random start";
break;
}
2016-04-12 21:06:06 +01:00
return "";
2016-04-12 20:10:37 +01:00
}