1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 08:55:37 +00:00
LatAnalyze/physics/2pt-fit.cpp

413 lines
14 KiB
C++
Raw Normal View History

#include <LatAnalyze/Core/OptParser.hpp>
#include <LatAnalyze/Functional/CompiledModel.hpp>
#include <LatAnalyze/Io/Io.hpp>
#include <LatAnalyze/Statistics/MatSample.hpp>
#include <LatAnalyze/Core/Math.hpp>
#include <LatAnalyze/Numerical/MinuitMinimizer.hpp>
#include <LatAnalyze/Numerical/NloptMinimizer.hpp>
#include <LatAnalyze/Core/Plot.hpp>
#include <LatAnalyze/Statistics/XYSampleData.hpp>
2016-06-14 12:35:17 +01:00
using namespace std;
using namespace Latan;
int main(int argc, char *argv[])
{
// parse arguments /////////////////////////////////////////////////////////
OptParser opt;
bool parsed, doPlot, doHeatmap, doCorr, fold;
string corrFileName, model, outFileName, outFmt;
Index ti, tf, shift, nPar, thinning;
double svdTol;
Minimizer::Verbosity verbosity;
opt.addOption("" , "ti" , OptParser::OptType::value , false,
"initial fit time");
opt.addOption("" , "tf" , OptParser::OptType::value , false,
"final fit time");
opt.addOption("t" , "thinning", OptParser::OptType::value , true,
"thinning of the time interval", "1");
opt.addOption("s", "shift" , OptParser::OptType::value , true,
"time variable shift", "0");
opt.addOption("m", "model" , OptParser::OptType::value , true,
2019-01-22 11:11:04 +00:00
"fit model (exp|exp2|exp3|cosh|cosh2|cosh3|explin|const|<interpreter code>)", "cosh");
2016-06-14 12:35:17 +01:00
opt.addOption("" , "nPar" , OptParser::OptType::value , true,
"number of model parameters for custom models "
"(-1 if irrelevant)", "-1");
opt.addOption("" , "svd" , OptParser::OptType::value , true,
"singular value elimination threshold", "0.");
opt.addOption("v", "verbosity", OptParser::OptType::value , true,
"minimizer verbosity level (0|1|2)", "0");
opt.addOption("o", "output", OptParser::OptType::value , true,
"output file", "");
opt.addOption("" , "uncorr" , OptParser::OptType::trigger, true,
"only do the uncorrelated fit");
opt.addOption("" , "fold" , OptParser::OptType::trigger, true,
"fold the correlator");
opt.addOption("p", "plot" , OptParser::OptType::trigger, true,
"show the fit plot");
opt.addOption("h", "heatmap" , OptParser::OptType::trigger, true,
"show the fit correlation heatmap");
opt.addOption("", "help" , OptParser::OptType::trigger, true,
"show this help message and exit");
parsed = opt.parse(argc, argv);
if (!parsed or (opt.getArgs().size() != 1) or opt.gotOption("help"))
{
cerr << "usage: " << argv[0] << " <options> <correlator file>" << endl;
cerr << endl << "Possible options:" << endl << opt << endl;
return EXIT_FAILURE;
}
corrFileName = opt.getArgs().front();
ti = opt.optionValue<Index>("ti");
tf = opt.optionValue<Index>("tf");
thinning = opt.optionValue<Index>("t");
shift = opt.optionValue<Index>("s");
model = opt.optionValue("m");
nPar = opt.optionValue<Index>("nPar");
svdTol = opt.optionValue<double>("svd");
outFileName = opt.optionValue<string>("o");
doCorr = !opt.gotOption("uncorr");
fold = opt.gotOption("fold");
doPlot = opt.gotOption("p");
doHeatmap = opt.gotOption("h");
switch (opt.optionValue<unsigned int>("v"))
{
case 0:
verbosity = Minimizer::Verbosity::Silent;
break;
case 1:
verbosity = Minimizer::Verbosity::Normal;
break;
case 2:
verbosity = Minimizer::Verbosity::Debug;
break;
default:
cerr << "error: wrong verbosity level" << endl;
return EXIT_FAILURE;
}
// load correlator /////////////////////////////////////////////////////////
DMatSample tmp, corr;
Index nSample, nt;
tmp = Io::load<DMatSample>(corrFileName);
nSample = tmp.size();
nt = tmp[central].rows();
tmp = tmp.block(0, 0, nt, 1);
corr = tmp;
FOR_STAT_ARRAY(corr, s)
{
for (Index t = 0; t < nt; ++t)
{
corr[s]((t - shift + nt)%nt) = tmp[s](t);
}
}
if (fold)
{
tmp = corr;
FOR_STAT_ARRAY(corr, s)
{
for (Index t = 0; t < nt; ++t)
{
corr[s](t) = 0.5*(tmp[s](t) + tmp[s]((nt - t) % nt));
}
}
}
// make model //////////////////////////////////////////////////////////////
DoubleModel mod;
bool coshModel = false, linearModel = false, constModel = false;
2016-06-14 12:35:17 +01:00
if ((model == "exp") or (model == "exp1"))
{
nPar = 2;
mod.setFunction([](const double *x, const double *p)
{
return p[1]*exp(-p[0]*x[0]);
}, 1, nPar);
}
else if (model == "exp2")
{
nPar = 4;
mod.setFunction([](const double *x, const double *p)
{
return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0]);
}, 1, nPar);
}
else if (model == "exp3")
{
nPar = 6;
mod.setFunction([](const double *x, const double *p)
{
return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0])
+ p[5]*exp(-p[4]*x[0]);
}, 1, nPar);
}
else if ((model == "cosh") or (model == "cosh1"))
{
coshModel = true;
nPar = 2;
mod.setFunction([nt](const double *x, const double *p)
{
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])));
}, 1, nPar);
}
else if (model == "cosh2")
{
coshModel = true;
nPar = 4;
mod.setFunction([nt](const double *x, const double *p)
{
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
+ p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])));
}, 1, nPar);
}
else if (model == "cosh3")
{
coshModel = true;
nPar = 6;
mod.setFunction([nt](const double *x, const double *p)
{
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
+ p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])))
+ p[5]*(exp(-p[2]*x[0])+exp(-p[4]*(nt-x[0])));
}, 1, nPar);
}
2019-01-07 11:55:00 +00:00
else if (model == "explin")
{
linearModel = true;
nPar = 2;
mod.setFunction([](const double *x, const double *p)
{
return p[1] - p[0]*x[0];
}, 1, nPar);
}
2019-01-22 11:11:04 +00:00
else if (model == "const")
{
constModel = true;
nPar = 1;
mod.setFunction([](const double *x __dumb, const double *p)
2019-01-22 11:11:04 +00:00
{
return p[0];
}, 1, nPar);
2019-01-22 11:11:04 +00:00
}
2016-06-14 12:35:17 +01:00
else
{
if (nPar > 0)
{
mod = compile(model, 1, nPar);
}
else
{
cerr << "error: please specify the number of model parameter"
" using the --nPar function" << endl;
return EXIT_FAILURE;
}
}
// fit /////////////////////////////////////////////////////////////////////
DMatSample tvec(nSample);
XYSampleData data(nSample);
SampleFitResult fit;
DVec init(nPar);
NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
MinuitMinimizer locMin;
vector<Minimizer *> unCorrMin{&globMin, &locMin};
FOR_STAT_ARRAY(tvec, s)
{
tvec[s] = DVec::LinSpaced(nt, 0, nt - 1);
}
data.addXDim(nt, "t/a", true);
data.addYDim("C(t)");
data.setUnidimData(tvec, corr);
// set parameter name /////////////
if(constModel)
{
2019-01-24 12:29:46 +00:00
mod.parName().setName(0, "const");
}
else
2016-06-14 12:35:17 +01:00
{
for (Index p = 0; p < nPar; p += 2)
{
mod.parName().setName(p, "E_" + strFrom(p/2));
mod.parName().setName(p + 1, "Z_" + strFrom(p/2));
}
2016-06-14 12:35:17 +01:00
}
//set initial values ////////////////
2019-01-07 11:55:00 +00:00
if (linearModel)
{
init(0) = data.y(nt/4, 0)[central] - data.y(nt/4 + 1, 0)[central];
init(1) = data.y(nt/4, 0)[central] + nt/4*init(0);
}
else if(constModel)
{
init(0) = data.y(nt/4, 0)[central];
2019-03-27 07:13:54 +00:00
}
2019-01-07 11:55:00 +00:00
else
{
init(0) = log(data.y(nt/4, 0)[central]/data.y(nt/4 + 1, 0)[central]);
init(1) = data.y(nt/4, 0)[central]/(exp(-init(0)*nt/4));
}
2016-06-14 12:35:17 +01:00
for (Index p = 2; p < nPar; p += 2)
{
init(p) = 2*init(p - 2);
init(p + 1) = init(p - 1)/2.;
}
2019-01-24 12:29:46 +00:00
// set limits for minimiser //////////////
2016-06-14 12:35:17 +01:00
for (Index p = 0; p < nPar; p += 2)
{
2019-01-07 11:55:00 +00:00
if (linearModel)
{
globMin.setLowLimit(p, -10.*fabs(init(p)));
globMin.setHighLimit(p, 10.*fabs(init(p)));
}
else if(constModel)
{
2019-03-27 07:13:54 +00:00
globMin.setLowLimit(p, -10*fabs(init(0)));
locMin.setLowLimit(p, -10*fabs(init(0)));
// cout << "Suppressing low limits" << endl;
globMin.setHighLimit(p, 10*fabs(init(0)));
}
2019-01-07 11:55:00 +00:00
else
{
globMin.setLowLimit(p, 0.);
locMin.setLowLimit(p, 0.);
globMin.setHighLimit(p, 10.*init(p));
}
if(!constModel)
{
globMin.setLowLimit(p + 1, -10.*fabs(init(p + 1)));
globMin.setHighLimit(p + 1, 10.*fabs(init(p + 1)));
}
2016-06-14 12:35:17 +01:00
}
globMin.setPrecision(0.001);
globMin.setMaxIteration(100000);
globMin.setVerbosity(verbosity);
locMin.setMaxIteration(1000000);
locMin.setVerbosity(verbosity);
2019-01-24 12:29:46 +00:00
// fit /////////////////////////////////
2016-06-14 12:35:17 +01:00
for (Index t = 0; t < nt; ++t)
{
data.fitPoint((t >= ti) and (t <= tf)
and ((t - ti) % thinning == 0), t);
}
if (doCorr)
{
cout << "-- uncorrelated fit..." << endl;
}
cout << "using model '" << model << "'" << endl;
data.setSvdTolerance(svdTol);
data.assumeYYCorrelated(false, 0, 0);
fit = data.fit(unCorrMin, init, mod);
fit.print();
if (doCorr)
{
cout << "-- correlated fit..." << endl;
cout << "using model '" << model << "'" << endl;
init = fit[central];
data.assumeYYCorrelated(true, 0, 0);
fit = data.fit(locMin, init, mod);
fit.print();
}
// plots ///////////////////////////////////////////////////////////////////
if (doPlot)
{
Plot p;
2019-01-24 12:29:46 +00:00
2016-06-14 12:35:17 +01:00
p << PlotRange(Axis::x, 0, nt - 1);
if (!linearModel and !constModel)
2019-01-07 11:55:00 +00:00
{
p << LogScale(Axis::y);
}
2016-06-14 12:35:17 +01:00
p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1);
p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1);
p << Color("rgb 'red'") << PlotData(data.getData());
2016-06-14 12:35:17 +01:00
p.display();
// effective mass plot //////////////////////////////////////////////////////
if (!constModel)
2016-06-14 12:35:17 +01:00
{
DMatSample effMass(nSample);
DVec effMassT, fitErr;
Index maxT = (coshModel) ? (nt - 2) : (nt - 1);
double e0, e0Err;
effMass.resizeMat(maxT, 1);
effMassT.setLinSpaced(maxT, 0, maxT-1);
fitErr = fit.variance().cwiseSqrt();
e0 = fit[central](0);
e0Err = fitErr(0);
if (coshModel)
2016-06-14 12:35:17 +01:00
{
FOR_STAT_ARRAY(effMass, s)
2016-06-14 12:35:17 +01:00
{
for (Index t = 1; t < nt - 1; ++t)
{
effMass[s](t - 1) = acosh((corr[s](t-1) + corr[s](t+1))
/(2.*corr[s](t)));
}
2016-06-14 12:35:17 +01:00
}
}
else if (linearModel)
2019-01-07 11:55:00 +00:00
{
FOR_STAT_ARRAY(effMass, s)
2019-01-07 11:55:00 +00:00
{
for (Index t = 0; t < nt - 1; ++t)
{
effMass[s](t) = corr[s](t) - corr[s](t+1);
}
2019-01-07 11:55:00 +00:00
}
}
else
2016-06-14 12:35:17 +01:00
{
FOR_STAT_ARRAY(effMass, s)
2016-06-14 12:35:17 +01:00
{
for (Index t = 1; t < nt; ++t)
{
effMass[s](t - 1) = log(corr[s](t-1)/corr[s](t));
}
2016-06-14 12:35:17 +01:00
}
}
p.reset();
p << PlotRange(Axis::x, 0, maxT);
p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err);
p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err);
p << Color("rgb 'blue'") << PlotHLine(e0);
p << Color("rgb 'red'") << PlotData(effMassT, effMass);
p << Caption("Effective Mass");
p.display();
2016-06-14 12:35:17 +01:00
}
}
2016-06-14 12:35:17 +01:00
if (doHeatmap)
{
Plot p;
Index n = data.getFitVarMat().rows();
DMat id = DMat::Identity(n, n);
p << PlotMatrix(Math::varToCorr(data.getFitVarMat()));
p << Caption("correlation matrix");
p.display();
if (svdTol > 0.)
{
p.reset();
p << PlotMatrix(id - data.getFitVarMat()*data.getFitVarMatPInv());
p << Caption("singular space projector");
p.display();
}
}
2016-06-14 12:35:17 +01:00
// output //////////////////////////////////////////////////////////////////
if (!outFileName.empty())
{
Io::save(fit, outFileName);
}
return EXIT_SUCCESS;
}