1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-15 02:05:36 +00:00
LatAnalyze/utils/sample-ft.cpp

95 lines
3.1 KiB
C++
Raw Normal View History

2017-10-10 16:56:23 +01:00
/*
* sample-ft.cpp, part of LatAnalyze 3
*
2020-01-13 09:57:06 +00:00
* Copyright (C) 2013 - 2020 Antonin Portelli
2017-10-10 16:56:23 +01:00
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/Core/OptParser.hpp>
#include <LatAnalyze/Numerical/GslFFT.hpp>
#include <LatAnalyze/Io/Io.hpp>
2017-10-10 16:56:23 +01:00
using namespace std;
using namespace Latan;
int main(int argc, char *argv[])
{
// argument parsing ////////////////////////////////////////////////////////
OptParser opt;
bool parsed;
string inFilename, outFilename;
unsigned int dir = FFT::Forward;
opt.addOption("o", "output", OptParser::OptType::value , true,
"output file name (default: result not saved)", "");
opt.addOption("b", "backward", OptParser::OptType::trigger, true,
"backward Fourier transform (forward by default)");
opt.addOption("" , "help" , OptParser::OptType::trigger, true,
"show this help message and exit");
parsed = opt.parse(argc, argv);
if (!parsed or (opt.getArgs().size() != 1) or opt.gotOption("help"))
{
cerr << "usage: " << argv[0];
cerr << " <options> <input file>" << endl;
cerr << endl << "Possible options:" << endl << opt << endl;
return EXIT_FAILURE;
}
inFilename = opt.getArgs()[0];
outFilename = opt.optionValue("o");
if (opt.gotOption("b"))
{
dir = FFT::Backward;
}
// Fourier transform ///////////////////////////////////////////////////////
DMatSample in = Io::load<DMatSample>(inFilename);
Index nSample = in.size(), l = in[central].rows();
bool isInComplex = (in[central].cols() > 1);
CMatSample res(nSample, l, 1);
DMatSample out(nSample, l, 2);
GslFFT ft(l);
cout << "-- computing Fourier transform..." << endl;
FOR_STAT_ARRAY(in, s)
{
res[s].real() = in[s].col(0);
if (isInComplex)
{
res[s].imag() = in[s].col(1);
}
else
{
res[s].imag() = DVec::Constant(l, 0.);
}
ft(res[s], dir);
out[s].col(0) = res[s].real();
out[s].col(1) = res[s].imag();
}
// output /////////////////////////////////////////////////////////////////
cout << scientific;
cout << "central value:\n" << out[central];
cout << endl;
cout << "standard deviation:\n" << out.variance().cwiseSqrt();
cout << endl;
if (!outFilename.empty())
{
Io::save<DMatSample>(out, outFilename);
}
return EXIT_SUCCESS;
}