mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-10 00:45:36 +00:00
Merge branch 'feature/correlator-fitter' into develop
This commit is contained in:
commit
0e8b9d2a8f
@ -236,14 +236,21 @@ PlotFunction::PlotFunction(const DoubleFunction &function, const double xMin,
|
|||||||
// PlotPredBand constructor ////////////////////////////////////////////////////
|
// PlotPredBand constructor ////////////////////////////////////////////////////
|
||||||
void PlotPredBand::makePredBand(const DMat &low, const DMat &high, const double opacity)
|
void PlotPredBand::makePredBand(const DMat &low, const DMat &high, const double opacity)
|
||||||
{
|
{
|
||||||
string lowFileName, highFileName;
|
string lowFileName, highFileName, contFileName;
|
||||||
|
DMat contour(low.rows() + high.rows() + 1, 2);
|
||||||
|
|
||||||
lowFileName = dumpToTmpFile(low);
|
FOR_MAT(low, i, j)
|
||||||
highFileName = dumpToTmpFile(high);
|
{
|
||||||
pushTmpFile(lowFileName);
|
contour(i, j) = low(i, j);
|
||||||
pushTmpFile(highFileName);
|
}
|
||||||
setCommand("'< (cat " + lowFileName + "; tac " + highFileName +
|
FOR_MAT(high, i, j)
|
||||||
"; head -n1 " + lowFileName + ")' u 1:2 w filledcurves closed" +
|
{
|
||||||
|
contour(low.rows() + i, j) = high(high.rows() - i - 1, j);
|
||||||
|
}
|
||||||
|
contour.row(low.rows() + high.rows()) = low.row(0);
|
||||||
|
contFileName = dumpToTmpFile(contour);
|
||||||
|
pushTmpFile(contFileName);
|
||||||
|
setCommand("'" + contFileName + "' u 1:2 w filledcurves closed" +
|
||||||
" fs solid " + strFrom(opacity) + " noborder");
|
" fs solid " + strFrom(opacity) + " noborder");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -54,6 +54,8 @@ libLatAnalyze_la_SOURCES = \
|
|||||||
Numerical/Minimizer.cpp \
|
Numerical/Minimizer.cpp \
|
||||||
Numerical/RootFinder.cpp \
|
Numerical/RootFinder.cpp \
|
||||||
Numerical/Solver.cpp \
|
Numerical/Solver.cpp \
|
||||||
|
Physics/CorrelatorFitter.cpp \
|
||||||
|
Physics/EffectiveMass.cpp \
|
||||||
Statistics/FitInterface.cpp \
|
Statistics/FitInterface.cpp \
|
||||||
Statistics/Histogram.cpp \
|
Statistics/Histogram.cpp \
|
||||||
Statistics/Random.cpp \
|
Statistics/Random.cpp \
|
||||||
@ -97,6 +99,8 @@ HPPFILES = \
|
|||||||
Numerical/Minimizer.hpp \
|
Numerical/Minimizer.hpp \
|
||||||
Numerical/RootFinder.hpp \
|
Numerical/RootFinder.hpp \
|
||||||
Numerical/Solver.hpp \
|
Numerical/Solver.hpp \
|
||||||
|
Physics/CorrelatorFitter.hpp \
|
||||||
|
Physics/EffectiveMass.hpp \
|
||||||
Statistics/Dataset.hpp \
|
Statistics/Dataset.hpp \
|
||||||
Statistics/FitInterface.hpp \
|
Statistics/FitInterface.hpp \
|
||||||
Statistics/Histogram.hpp \
|
Statistics/Histogram.hpp \
|
||||||
|
346
lib/Physics/CorrelatorFitter.cpp
Normal file
346
lib/Physics/CorrelatorFitter.cpp
Normal file
@ -0,0 +1,346 @@
|
|||||||
|
/*
|
||||||
|
* CorrelatorFitter.cpp, part of LatAnalyze 3
|
||||||
|
*
|
||||||
|
* Copyright (C) 2013 - 2020 Antonin Portelli
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <LatAnalyze/Physics/CorrelatorFitter.hpp>
|
||||||
|
#include <LatAnalyze/includes.hpp>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
using namespace Latan;
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* Correlator models *
|
||||||
|
******************************************************************************/
|
||||||
|
DoubleModel CorrelatorModels::makeExpModel(const Index nState)
|
||||||
|
{
|
||||||
|
DoubleModel mod;
|
||||||
|
|
||||||
|
mod.setFunction([nState](const double *x, const double *p)
|
||||||
|
{
|
||||||
|
double res = 0.;
|
||||||
|
|
||||||
|
for (unsigned int i = 0; i < nState; ++i)
|
||||||
|
{
|
||||||
|
res += p[2*i + 1]*exp(-p[2*i]*x[0]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}, 1, 2*nState);
|
||||||
|
for (unsigned int i = 0; i < nState; ++i)
|
||||||
|
{
|
||||||
|
mod.parName().setName(2*i, "E_" + strFrom(i));
|
||||||
|
mod.parName().setName(2*i + 1, "Z_" + strFrom(i));
|
||||||
|
}
|
||||||
|
|
||||||
|
return mod;
|
||||||
|
}
|
||||||
|
|
||||||
|
DoubleModel CorrelatorModels::makeCoshModel(const Index nState, const Index nt)
|
||||||
|
{
|
||||||
|
DoubleModel mod;
|
||||||
|
|
||||||
|
mod.setFunction([nState, nt](const double *x, const double *p)
|
||||||
|
{
|
||||||
|
double res = 0.;
|
||||||
|
|
||||||
|
for (unsigned int i = 0; i < nState; ++i)
|
||||||
|
{
|
||||||
|
res += p[2*i + 1]*(exp(-p[2*i]*x[0]) + exp(-p[2*i]*(nt - x[0])));
|
||||||
|
}
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}, 1, 2*nState);
|
||||||
|
for (unsigned int i = 0; i < nState; ++i)
|
||||||
|
{
|
||||||
|
mod.parName().setName(2*i, "E_" + strFrom(i));
|
||||||
|
mod.parName().setName(2*i + 1, "Z_" + strFrom(i));
|
||||||
|
}
|
||||||
|
|
||||||
|
return mod;
|
||||||
|
}
|
||||||
|
|
||||||
|
DoubleModel CorrelatorModels::makeSinhModel(const Index nState, const Index nt)
|
||||||
|
{
|
||||||
|
DoubleModel mod;
|
||||||
|
|
||||||
|
mod.setFunction([nState, nt](const double *x, const double *p)
|
||||||
|
{
|
||||||
|
double res = 0.;
|
||||||
|
|
||||||
|
for (unsigned int i = 0; i < nState; ++i)
|
||||||
|
{
|
||||||
|
res += p[2*i + 1]*(exp(-p[2*i]*x[0]) - exp(-p[2*i]*(nt - x[0])));
|
||||||
|
}
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}, 1, 2*nState);
|
||||||
|
for (unsigned int i = 0; i < nState; ++i)
|
||||||
|
{
|
||||||
|
mod.parName().setName(2*i, "E_" + strFrom(i));
|
||||||
|
mod.parName().setName(2*i + 1, "Z_" + strFrom(i));
|
||||||
|
}
|
||||||
|
|
||||||
|
return mod;
|
||||||
|
}
|
||||||
|
|
||||||
|
DoubleModel CorrelatorModels::makeConstModel(void)
|
||||||
|
{
|
||||||
|
DoubleModel mod;
|
||||||
|
|
||||||
|
mod.setFunction([](const double *x, const double *p __dumb)
|
||||||
|
{
|
||||||
|
return x[0];
|
||||||
|
}, 1, 1);
|
||||||
|
mod.parName().setName(0, "cst");
|
||||||
|
|
||||||
|
return mod;
|
||||||
|
}
|
||||||
|
|
||||||
|
DoubleModel CorrelatorModels::makeLinearModel(void)
|
||||||
|
{
|
||||||
|
DoubleModel mod;
|
||||||
|
|
||||||
|
mod.setFunction([](const double *x, const double *p)
|
||||||
|
{
|
||||||
|
return p[0] + p[1]*x[0];
|
||||||
|
}, 1, 2);
|
||||||
|
|
||||||
|
return mod;
|
||||||
|
}
|
||||||
|
|
||||||
|
CorrelatorModels::ModelPar CorrelatorModels::parseModel(const string s)
|
||||||
|
{
|
||||||
|
smatch sm;
|
||||||
|
ModelPar par;
|
||||||
|
|
||||||
|
if (regex_match(s, sm, regex("exp([0-9]+)")))
|
||||||
|
{
|
||||||
|
par.type = CorrelatorType::exp;
|
||||||
|
par.nState = strTo<Index>(sm[1].str());
|
||||||
|
}
|
||||||
|
else if (regex_match(s, sm, regex("cosh([0-9]+)")))
|
||||||
|
{
|
||||||
|
par.type = CorrelatorType::cosh;
|
||||||
|
par.nState = strTo<Index>(sm[1].str());
|
||||||
|
}
|
||||||
|
else if (regex_match(s, sm, regex("sinh([0-9]+)")))
|
||||||
|
{
|
||||||
|
par.type = CorrelatorType::sinh;
|
||||||
|
par.nState = strTo<Index>(sm[1].str());
|
||||||
|
}
|
||||||
|
else if (s == "linear")
|
||||||
|
{
|
||||||
|
par.type = CorrelatorType::linear;
|
||||||
|
par.nState = 1;
|
||||||
|
}
|
||||||
|
else if (s == "cst")
|
||||||
|
{
|
||||||
|
par.type = CorrelatorType::cst;
|
||||||
|
par.nState = 1;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
par.type = CorrelatorType::undefined;
|
||||||
|
par.nState = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
return par;
|
||||||
|
}
|
||||||
|
|
||||||
|
DoubleModel CorrelatorModels::makeModel(const CorrelatorModels::ModelPar par,
|
||||||
|
const Index nt)
|
||||||
|
{
|
||||||
|
switch (par.type)
|
||||||
|
{
|
||||||
|
case CorrelatorType::undefined:
|
||||||
|
LATAN_ERROR(Argument, "correlator type is undefined");
|
||||||
|
break;
|
||||||
|
case CorrelatorType::exp:
|
||||||
|
return makeExpModel(par.nState);
|
||||||
|
break;
|
||||||
|
case CorrelatorType::cosh:
|
||||||
|
return makeCoshModel(par.nState, nt);
|
||||||
|
break;
|
||||||
|
case CorrelatorType::sinh:
|
||||||
|
return makeSinhModel(par.nState, nt);
|
||||||
|
break;
|
||||||
|
case CorrelatorType::linear:
|
||||||
|
return makeLinearModel();
|
||||||
|
break;
|
||||||
|
case CorrelatorType::cst:
|
||||||
|
return makeConstModel();
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
DVec CorrelatorModels::parameterGuess(const DMatSample &corr,
|
||||||
|
const ModelPar par)
|
||||||
|
{
|
||||||
|
DVec init;
|
||||||
|
Index nt = corr[central].size();
|
||||||
|
|
||||||
|
switch (par.type)
|
||||||
|
{
|
||||||
|
case CorrelatorType::undefined:
|
||||||
|
LATAN_ERROR(Argument, "correlator type is undefined");
|
||||||
|
break;
|
||||||
|
case CorrelatorType::exp:
|
||||||
|
case CorrelatorType::cosh:
|
||||||
|
case CorrelatorType::sinh:
|
||||||
|
init.resize(2*par.nState);
|
||||||
|
init(0) = log(corr[central](nt/4)/corr[central](nt/4 + 1));
|
||||||
|
init(1) = corr[central](nt/4)/(exp(-init(0)*nt/4));
|
||||||
|
for (Index p = 2; p < init.size(); p += 2)
|
||||||
|
{
|
||||||
|
init(p) = 2*init(p - 2);
|
||||||
|
init(p + 1) = init(p - 1)/2.;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case CorrelatorType::linear:
|
||||||
|
init.resize(2);
|
||||||
|
init(0) = corr[central](nt/4) - corr[central](nt/4 + 1, 0);
|
||||||
|
init(1) = corr[central](nt/4, 0) + nt/4*init(0);
|
||||||
|
break;
|
||||||
|
case CorrelatorType::cst:
|
||||||
|
init.resize(1);
|
||||||
|
init(0) = corr[central](nt/4);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
return init;
|
||||||
|
}
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* CorrelatorFitter implementation *
|
||||||
|
******************************************************************************/
|
||||||
|
// constructors ////////////////////////////////////////////////////////////////
|
||||||
|
CorrelatorFitter::CorrelatorFitter(const DMatSample &corr)
|
||||||
|
{
|
||||||
|
setCorrelator(corr);
|
||||||
|
}
|
||||||
|
|
||||||
|
CorrelatorFitter::CorrelatorFitter(const std::vector<DMatSample> &corr)
|
||||||
|
{
|
||||||
|
setCorrelators(corr);
|
||||||
|
}
|
||||||
|
|
||||||
|
// access //////////////////////////////////////////////////////////////////////
|
||||||
|
XYSampleData & CorrelatorFitter::data(void)
|
||||||
|
{
|
||||||
|
return *data_;
|
||||||
|
}
|
||||||
|
|
||||||
|
void CorrelatorFitter::setCorrelator(const DMatSample &corr)
|
||||||
|
{
|
||||||
|
std::vector<DMatSample> vec;
|
||||||
|
|
||||||
|
vec.push_back(corr);
|
||||||
|
setCorrelators(vec);
|
||||||
|
}
|
||||||
|
|
||||||
|
void CorrelatorFitter::setCorrelators(const std::vector<DMatSample> &corr)
|
||||||
|
{
|
||||||
|
Index nSample = corr[0].size();
|
||||||
|
DMatSample tVec(nSample);
|
||||||
|
std::vector<const DMatSample *> ptVec;
|
||||||
|
|
||||||
|
nt_ = corr[0][central].rows();
|
||||||
|
tVec.fill(DVec::LinSpaced(nt_, 0, nt_ - 1));
|
||||||
|
for (auto &c: corr)
|
||||||
|
{
|
||||||
|
ptVec.push_back(&c);
|
||||||
|
}
|
||||||
|
data_.reset(new XYSampleData(corr[0].size()));
|
||||||
|
data_->addXDim(nt_, "t/a", true);
|
||||||
|
for (unsigned int i = 0; i < corr.size(); ++i)
|
||||||
|
{
|
||||||
|
data_->addYDim("C_" + strFrom(i) + "(t)");
|
||||||
|
}
|
||||||
|
data_->setUnidimData(tVec, ptVec);
|
||||||
|
model_.resize(corr.size());
|
||||||
|
range_.resize(corr.size(), make_pair(0, nt_ - 1));
|
||||||
|
thinning_.resize(corr.size(), 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void CorrelatorFitter::setModel(const DoubleModel &model, const Index i)
|
||||||
|
{
|
||||||
|
model_[i] = model;
|
||||||
|
}
|
||||||
|
|
||||||
|
const DoubleModel & CorrelatorFitter::getModel(const Index i) const
|
||||||
|
{
|
||||||
|
return model_.at(i);
|
||||||
|
}
|
||||||
|
|
||||||
|
void CorrelatorFitter::setFitRange(const Index tMin, const Index tMax,
|
||||||
|
const Index i)
|
||||||
|
{
|
||||||
|
range_[i] = make_pair(tMin, tMax);
|
||||||
|
refreshRanges();
|
||||||
|
}
|
||||||
|
|
||||||
|
void CorrelatorFitter::setCorrelation(const bool isCorrelated, const Index i,
|
||||||
|
const Index j)
|
||||||
|
{
|
||||||
|
data_->assumeYYCorrelated(isCorrelated, i, j);
|
||||||
|
}
|
||||||
|
|
||||||
|
DMat CorrelatorFitter::getVarianceMatrix(void) const
|
||||||
|
{
|
||||||
|
return data_->getFitVarMat();
|
||||||
|
}
|
||||||
|
|
||||||
|
void CorrelatorFitter::setThinning(const Index thinning, const Index i)
|
||||||
|
{
|
||||||
|
thinning_[i] = thinning;
|
||||||
|
refreshRanges();
|
||||||
|
}
|
||||||
|
|
||||||
|
// fit functions ///////////////////////////////////////////////////////////////
|
||||||
|
SampleFitResult CorrelatorFitter::fit(Minimizer &minimizer, const DVec &init)
|
||||||
|
{
|
||||||
|
vector<Minimizer *> vecPt = {&minimizer};
|
||||||
|
|
||||||
|
return fit(vecPt, init);
|
||||||
|
}
|
||||||
|
|
||||||
|
SampleFitResult CorrelatorFitter::fit(vector<Minimizer *> &minimizer,
|
||||||
|
const DVec &init)
|
||||||
|
{
|
||||||
|
vector<const DoubleModel *> vecPt(model_.size());
|
||||||
|
|
||||||
|
for (unsigned int i = 0; i < model_.size(); ++i)
|
||||||
|
{
|
||||||
|
vecPt[i] = &(model_[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return data_->fit(minimizer, init, vecPt);
|
||||||
|
}
|
||||||
|
|
||||||
|
// internal function to refresh fit ranges /////////////////////////////////////
|
||||||
|
void CorrelatorFitter::refreshRanges(void)
|
||||||
|
{
|
||||||
|
for (unsigned int i = 0; i < range_.size(); ++i)
|
||||||
|
for (Index t = 0; t < nt_; ++t)
|
||||||
|
{
|
||||||
|
data_->fitPoint((t >= range_[i].first) and (t <= range_[i].second)
|
||||||
|
and ((t - range_[i].first) % thinning_[i] == 0), t);
|
||||||
|
}
|
||||||
|
}
|
92
lib/Physics/CorrelatorFitter.hpp
Normal file
92
lib/Physics/CorrelatorFitter.hpp
Normal file
@ -0,0 +1,92 @@
|
|||||||
|
/*
|
||||||
|
* CorrelatorFitter.hpp, part of LatAnalyze 3
|
||||||
|
*
|
||||||
|
* Copyright (C) 2013 - 2020 Antonin Portelli
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef Latan_CorrelatorFitter_hpp_
|
||||||
|
#define Latan_CorrelatorFitter_hpp_
|
||||||
|
|
||||||
|
#include <LatAnalyze/Global.hpp>
|
||||||
|
#include <LatAnalyze/Functional/Model.hpp>
|
||||||
|
#include <LatAnalyze/Statistics/XYSampleData.hpp>
|
||||||
|
|
||||||
|
BEGIN_LATAN_NAMESPACE
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* Correlator types & models *
|
||||||
|
******************************************************************************/
|
||||||
|
enum class CorrelatorType {undefined, exp, cosh, sinh, linear, cst};
|
||||||
|
|
||||||
|
namespace CorrelatorModels
|
||||||
|
{
|
||||||
|
struct ModelPar
|
||||||
|
{
|
||||||
|
CorrelatorType type;
|
||||||
|
Index nState;
|
||||||
|
};
|
||||||
|
|
||||||
|
DoubleModel makeExpModel(const Index nState);
|
||||||
|
DoubleModel makeCoshModel(const Index nState, const Index nt);
|
||||||
|
DoubleModel makeSinhModel(const Index nState, const Index nt);
|
||||||
|
DoubleModel makeConstModel(void);
|
||||||
|
DoubleModel makeLinearModel(void);
|
||||||
|
ModelPar parseModel(const std::string s);
|
||||||
|
DoubleModel makeModel(const ModelPar par, const Index nt);
|
||||||
|
DVec parameterGuess(const DMatSample &corr, const ModelPar par);
|
||||||
|
};
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* Correlator fit utility class *
|
||||||
|
******************************************************************************/
|
||||||
|
class CorrelatorFitter
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
// constructors
|
||||||
|
CorrelatorFitter(const DMatSample &corr);
|
||||||
|
CorrelatorFitter(const std::vector<DMatSample> &corr);
|
||||||
|
// destructor
|
||||||
|
virtual ~CorrelatorFitter(void) = default;
|
||||||
|
// access
|
||||||
|
XYSampleData & data(void);
|
||||||
|
void setCorrelator(const DMatSample &corr);
|
||||||
|
void setCorrelators(const std::vector<DMatSample> &corr);
|
||||||
|
const DMatSample & getCorrelator(const Index i = 0) const;
|
||||||
|
const std::vector<DMatSample> & getCorrelators(void) const;
|
||||||
|
void setModel(const DoubleModel &model, const Index i = 0);
|
||||||
|
const DoubleModel & getModel(const Index i = 0) const;
|
||||||
|
void setFitRange(const Index tMin, const Index tMax, const Index i = 0);
|
||||||
|
void setCorrelation(const bool isCorrelated, const Index i = 0,
|
||||||
|
const Index j = 0);
|
||||||
|
DMat getVarianceMatrix(void) const;
|
||||||
|
void setThinning(const Index thinning, const Index i = 0);
|
||||||
|
// fit functions
|
||||||
|
SampleFitResult fit(Minimizer &minimizer, const DVec &init);
|
||||||
|
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init);
|
||||||
|
private:
|
||||||
|
// internal function to refresh fit ranges
|
||||||
|
void refreshRanges(void);
|
||||||
|
private:
|
||||||
|
Index nt_{0};
|
||||||
|
std::unique_ptr<XYSampleData> data_;
|
||||||
|
std::vector<DoubleModel> model_;
|
||||||
|
std::vector<std::pair<Index, Index>> range_;
|
||||||
|
std::vector<Index> thinning_;
|
||||||
|
};
|
||||||
|
|
||||||
|
END_LATAN_NAMESPACE
|
||||||
|
|
||||||
|
#endif // Latan_CorrelatorFitter_hpp_
|
132
lib/Physics/EffectiveMass.cpp
Normal file
132
lib/Physics/EffectiveMass.cpp
Normal file
@ -0,0 +1,132 @@
|
|||||||
|
/*
|
||||||
|
* EffectiveMass.cpp, part of LatAnalyze 3
|
||||||
|
*
|
||||||
|
* Copyright (C) 2013 - 2020 Antonin Portelli
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <LatAnalyze/Physics/EffectiveMass.hpp>
|
||||||
|
#include <LatAnalyze/includes.hpp>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
using namespace Latan;
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* EffectiveMass implementation *
|
||||||
|
******************************************************************************/
|
||||||
|
// constructors ////////////////////////////////////////////////////////////////
|
||||||
|
EffectiveMass::EffectiveMass(const CorrelatorType type)
|
||||||
|
{
|
||||||
|
setType(type);
|
||||||
|
}
|
||||||
|
|
||||||
|
// access //////////////////////////////////////////////////////////////////////
|
||||||
|
CorrelatorType EffectiveMass::getType(void) const
|
||||||
|
{
|
||||||
|
return type_;
|
||||||
|
}
|
||||||
|
|
||||||
|
void EffectiveMass::setType(const CorrelatorType type)
|
||||||
|
{
|
||||||
|
type_ = type;
|
||||||
|
}
|
||||||
|
|
||||||
|
DVec EffectiveMass::getTime(const Index nt) const
|
||||||
|
{
|
||||||
|
DVec tvec;
|
||||||
|
|
||||||
|
switch (type_)
|
||||||
|
{
|
||||||
|
case CorrelatorType::undefined:
|
||||||
|
LATAN_ERROR(Argument, "correlator type is undefined");
|
||||||
|
break;
|
||||||
|
case CorrelatorType::exp:
|
||||||
|
case CorrelatorType::linear:
|
||||||
|
tvec = DVec::LinSpaced(nt - 1, 0, nt - 2);
|
||||||
|
break;
|
||||||
|
case CorrelatorType::cosh:
|
||||||
|
case CorrelatorType::sinh:
|
||||||
|
tvec = DVec::LinSpaced(nt - 2, 1, nt - 2);
|
||||||
|
break;
|
||||||
|
case CorrelatorType::cst:
|
||||||
|
tvec = DVec::LinSpaced(nt, 0, nt - 1);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
return tvec;
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute effective mass //////////////////////////////////////////////////////
|
||||||
|
DVec EffectiveMass::operator()(const DVec &corr) const
|
||||||
|
{
|
||||||
|
Index nt = corr.size();
|
||||||
|
DVec em;
|
||||||
|
|
||||||
|
if (nt < 2)
|
||||||
|
{
|
||||||
|
LATAN_ERROR(Size, "input vector has less than 2 elements");
|
||||||
|
}
|
||||||
|
switch (type_)
|
||||||
|
{
|
||||||
|
case CorrelatorType::undefined:
|
||||||
|
LATAN_ERROR(Argument, "correlator type is undefined");
|
||||||
|
break;
|
||||||
|
case CorrelatorType::exp:
|
||||||
|
em.resize(nt - 1);
|
||||||
|
for (Index t = 1; t < nt; ++t)
|
||||||
|
{
|
||||||
|
em(t - 1) = log(corr(t - 1)/corr(t));
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case CorrelatorType::cosh:
|
||||||
|
em.resize(nt - 2);
|
||||||
|
for (Index t = 1; t < nt - 1; ++t)
|
||||||
|
{
|
||||||
|
em(t - 1) = acosh((corr(t - 1) + corr(t + 1))/(2.*corr(t)));
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case CorrelatorType::sinh:
|
||||||
|
em.resize(nt - 2);
|
||||||
|
for (Index t = 1; t < nt - 1; ++t)
|
||||||
|
{
|
||||||
|
em(t - 1) = acosh((corr(t - 1) + corr(t + 1))/(2.*corr(t)));
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case CorrelatorType::linear:
|
||||||
|
em.resize(nt - 1);
|
||||||
|
for (Index t = 0; t < nt - 1; ++t)
|
||||||
|
{
|
||||||
|
em(t) = corr(t) - corr(t - 1);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case CorrelatorType::cst:
|
||||||
|
em = corr;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
return em;
|
||||||
|
}
|
||||||
|
|
||||||
|
DMatSample EffectiveMass::operator()(const DMatSample &corr) const
|
||||||
|
{
|
||||||
|
DMatSample em(corr.size());
|
||||||
|
|
||||||
|
FOR_STAT_ARRAY(em, s)
|
||||||
|
{
|
||||||
|
em[s] = (*this)(corr[s]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return em;
|
||||||
|
}
|
50
lib/Physics/EffectiveMass.hpp
Normal file
50
lib/Physics/EffectiveMass.hpp
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
/*
|
||||||
|
* EffectiveMass.hpp, part of LatAnalyze 3
|
||||||
|
*
|
||||||
|
* Copyright (C) 2013 - 2020 Antonin Portelli
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef Latan_EffectiveMass_hpp_
|
||||||
|
#define Latan_EffectiveMass_hpp_
|
||||||
|
|
||||||
|
#include <LatAnalyze/Global.hpp>
|
||||||
|
#include <LatAnalyze/Statistics/MatSample.hpp>
|
||||||
|
#include <LatAnalyze/Physics/CorrelatorFitter.hpp>
|
||||||
|
|
||||||
|
BEGIN_LATAN_NAMESPACE
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* Effective mass class *
|
||||||
|
******************************************************************************/
|
||||||
|
class EffectiveMass
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
// constructors
|
||||||
|
EffectiveMass(const CorrelatorType type = CorrelatorType::exp);
|
||||||
|
// access
|
||||||
|
CorrelatorType getType(void) const;
|
||||||
|
void setType(const CorrelatorType type);
|
||||||
|
DVec getTime(const Index nt) const;
|
||||||
|
// compute effective mass
|
||||||
|
DVec operator()(const DVec &corr) const;
|
||||||
|
DMatSample operator()(const DMatSample &corr) const;
|
||||||
|
private:
|
||||||
|
CorrelatorType type_;
|
||||||
|
};
|
||||||
|
|
||||||
|
END_LATAN_NAMESPACE
|
||||||
|
|
||||||
|
#endif // Latan_EffectiveMass_hpp_
|
@ -1,11 +1,13 @@
|
|||||||
|
#include <LatAnalyze/Core/Math.hpp>
|
||||||
#include <LatAnalyze/Core/OptParser.hpp>
|
#include <LatAnalyze/Core/OptParser.hpp>
|
||||||
|
#include <LatAnalyze/Core/Plot.hpp>
|
||||||
#include <LatAnalyze/Functional/CompiledModel.hpp>
|
#include <LatAnalyze/Functional/CompiledModel.hpp>
|
||||||
#include <LatAnalyze/Io/Io.hpp>
|
#include <LatAnalyze/Io/Io.hpp>
|
||||||
#include <LatAnalyze/Statistics/MatSample.hpp>
|
|
||||||
#include <LatAnalyze/Core/Math.hpp>
|
|
||||||
#include <LatAnalyze/Numerical/MinuitMinimizer.hpp>
|
#include <LatAnalyze/Numerical/MinuitMinimizer.hpp>
|
||||||
#include <LatAnalyze/Numerical/NloptMinimizer.hpp>
|
#include <LatAnalyze/Numerical/NloptMinimizer.hpp>
|
||||||
#include <LatAnalyze/Core/Plot.hpp>
|
#include <LatAnalyze/Physics/CorrelatorFitter.hpp>
|
||||||
|
#include <LatAnalyze/Physics/EffectiveMass.hpp>
|
||||||
|
#include <LatAnalyze/Statistics/MatSample.hpp>
|
||||||
#include <LatAnalyze/Statistics/XYSampleData.hpp>
|
#include <LatAnalyze/Statistics/XYSampleData.hpp>
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
@ -17,17 +19,6 @@ struct TwoPtFit
|
|||||||
Index tMin, tMax;
|
Index tMin, tMax;
|
||||||
};
|
};
|
||||||
|
|
||||||
void setFitRange(XYSampleData &data, const Index ti, const Index tf,
|
|
||||||
const Index thinning, const Index nt)
|
|
||||||
{
|
|
||||||
for (Index t = 0; t < nt; ++t)
|
|
||||||
{
|
|
||||||
data.fitPoint((t >= ti) and (t <= tf)
|
|
||||||
and ((t - ti) % thinning == 0), t);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
int main(int argc, char *argv[])
|
int main(int argc, char *argv[])
|
||||||
{
|
{
|
||||||
// parse arguments /////////////////////////////////////////////////////////
|
// parse arguments /////////////////////////////////////////////////////////
|
||||||
@ -47,7 +38,7 @@ int main(int argc, char *argv[])
|
|||||||
opt.addOption("s", "shift" , OptParser::OptType::value , true,
|
opt.addOption("s", "shift" , OptParser::OptType::value , true,
|
||||||
"time variable shift", "0");
|
"time variable shift", "0");
|
||||||
opt.addOption("m", "model" , OptParser::OptType::value , true,
|
opt.addOption("m", "model" , OptParser::OptType::value , true,
|
||||||
"fit model (exp|exp2|exp3|sinh|cosh|cosh2|cosh3|explin|const|<interpreter code>)", "cosh");
|
"fit model (exp<n>|sinh<n>|cosh<n>|linear|cst|<interpreter code>)", "exp1");
|
||||||
opt.addOption("" , "nPar" , OptParser::OptType::value , true,
|
opt.addOption("" , "nPar" , OptParser::OptType::value , true,
|
||||||
"number of model parameters for custom models "
|
"number of model parameters for custom models "
|
||||||
"(-1 if irrelevant)", "-1");
|
"(-1 if irrelevant)", "-1");
|
||||||
@ -138,91 +129,15 @@ int main(int argc, char *argv[])
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// make models /////////////////////////////////////////////////////////////
|
// make model //////////////////////////////////////////////////////////////
|
||||||
DoubleModel mod;
|
CorrelatorFitter fitter(corr);
|
||||||
bool sinhModel = false, coshModel = false, linearModel = false, constModel = false;
|
DoubleModel mod;
|
||||||
|
auto modelPar = CorrelatorModels::parseModel(model);
|
||||||
|
|
||||||
if ((model == "exp") or (model == "exp1"))
|
if (modelPar.type != CorrelatorType::undefined)
|
||||||
{
|
{
|
||||||
nPar = 2;
|
mod = CorrelatorModels::makeModel(modelPar, nt);
|
||||||
mod.setFunction([](const double *x, const double *p)
|
nPar = mod.getNPar();
|
||||||
{
|
|
||||||
return p[1]*exp(-p[0]*x[0]);
|
|
||||||
}, 1, nPar);
|
|
||||||
}
|
|
||||||
else if (model == "exp2")
|
|
||||||
{
|
|
||||||
nPar = 4;
|
|
||||||
mod.setFunction([](const double *x, const double *p)
|
|
||||||
{
|
|
||||||
return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0]);
|
|
||||||
}, 1, nPar);
|
|
||||||
}
|
|
||||||
else if (model == "exp3")
|
|
||||||
{
|
|
||||||
nPar = 6;
|
|
||||||
mod.setFunction([](const double *x, const double *p)
|
|
||||||
{
|
|
||||||
return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0])
|
|
||||||
+ p[5]*exp(-p[4]*x[0]);
|
|
||||||
}, 1, nPar);
|
|
||||||
}
|
|
||||||
else if (model == "sinh")
|
|
||||||
{
|
|
||||||
sinhModel = true;
|
|
||||||
nPar = 2;
|
|
||||||
mod.setFunction([nt](const double *x, const double *p)
|
|
||||||
{
|
|
||||||
return p[1]*(exp(-p[0]*x[0])-exp(-p[0]*(nt-x[0])));
|
|
||||||
}, 1, nPar);
|
|
||||||
}
|
|
||||||
else if ((model == "cosh") or (model == "cosh1"))
|
|
||||||
{
|
|
||||||
coshModel = true;
|
|
||||||
nPar = 2;
|
|
||||||
mod.setFunction([nt](const double *x, const double *p)
|
|
||||||
{
|
|
||||||
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])));
|
|
||||||
}, 1, nPar);
|
|
||||||
}
|
|
||||||
else if (model == "cosh2")
|
|
||||||
{
|
|
||||||
coshModel = true;
|
|
||||||
nPar = 4;
|
|
||||||
mod.setFunction([nt](const double *x, const double *p)
|
|
||||||
{
|
|
||||||
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
|
|
||||||
+ p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])));
|
|
||||||
}, 1, nPar);
|
|
||||||
}
|
|
||||||
else if (model == "cosh3")
|
|
||||||
{
|
|
||||||
coshModel = true;
|
|
||||||
nPar = 6;
|
|
||||||
mod.setFunction([nt](const double *x, const double *p)
|
|
||||||
{
|
|
||||||
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
|
|
||||||
+ p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])))
|
|
||||||
+ p[5]*(exp(-p[2]*x[0])+exp(-p[4]*(nt-x[0])));
|
|
||||||
}, 1, nPar);
|
|
||||||
}
|
|
||||||
else if (model == "explin")
|
|
||||||
{
|
|
||||||
linearModel = true;
|
|
||||||
nPar = 2;
|
|
||||||
mod.setFunction([](const double *x, const double *p)
|
|
||||||
{
|
|
||||||
return p[1] - p[0]*x[0];
|
|
||||||
}, 1, nPar);
|
|
||||||
}
|
|
||||||
else if (model == "const")
|
|
||||||
{
|
|
||||||
constModel = true;
|
|
||||||
nPar = 1;
|
|
||||||
mod.setFunction([](const double *x __dumb, const double *p)
|
|
||||||
{
|
|
||||||
return p[0];
|
|
||||||
}, 1, nPar);
|
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
@ -240,81 +155,44 @@ int main(int argc, char *argv[])
|
|||||||
}
|
}
|
||||||
|
|
||||||
// fit /////////////////////////////////////////////////////////////////////
|
// fit /////////////////////////////////////////////////////////////////////
|
||||||
DMatSample tvec(nSample);
|
|
||||||
XYSampleData data(nSample);
|
|
||||||
DVec init(nPar);
|
DVec init(nPar);
|
||||||
NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
|
NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
|
||||||
MinuitMinimizer locMin;
|
MinuitMinimizer locMin;
|
||||||
vector<Minimizer *> unCorrMin{&globMin, &locMin};
|
vector<Minimizer *> unCorrMin{&globMin, &locMin};
|
||||||
|
|
||||||
FOR_STAT_ARRAY(tvec, s)
|
// set fitter **************************************************************
|
||||||
{
|
fitter.setModel(mod);
|
||||||
tvec[s] = DVec::LinSpaced(nt, 0, nt - 1);
|
fitter.data().setSvdTolerance(svdTol);
|
||||||
}
|
fitter.setThinning(thinning);
|
||||||
data.addXDim(nt, "t/a", true);
|
|
||||||
data.addYDim("C(t)");
|
|
||||||
data.setUnidimData(tvec, corr);
|
|
||||||
// set parameter name ******************************************************
|
|
||||||
if(constModel)
|
|
||||||
{
|
|
||||||
mod.parName().setName(0, "const");
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
for (Index p = 0; p < nPar; p += 2)
|
|
||||||
{
|
|
||||||
mod.parName().setName(p, "E_" + strFrom(p/2));
|
|
||||||
mod.parName().setName(p + 1, "Z_" + strFrom(p/2));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// set initial values ******************************************************
|
|
||||||
if (linearModel)
|
|
||||||
{
|
|
||||||
init(0) = data.y(nt/4, 0)[central] - data.y(nt/4 + 1, 0)[central];
|
|
||||||
init(1) = data.y(nt/4, 0)[central] + nt/4*init(0);
|
|
||||||
}
|
|
||||||
else if(constModel)
|
|
||||||
{
|
|
||||||
init(0) = data.y(nt/4, 0)[central];
|
|
||||||
|
|
||||||
|
// set initial values ******************************************************
|
||||||
|
if (modelPar.type != CorrelatorType::undefined)
|
||||||
|
{
|
||||||
|
init = CorrelatorModels::parameterGuess(corr, modelPar);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
init(0) = log(data.y(nt/4, 0)[central]/data.y(nt/4 + 1, 0)[central]);
|
init.fill(0.1);
|
||||||
init(1) = data.y(nt/4, 0)[central]/(exp(-init(0)*nt/4));
|
|
||||||
}
|
|
||||||
for (Index p = 2; p < nPar; p += 2)
|
|
||||||
{
|
|
||||||
init(p) = 2*init(p - 2);
|
|
||||||
init(p + 1) = init(p - 1)/2.;
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// set limits for minimisers ***********************************************
|
// set limits for minimisers ***********************************************
|
||||||
for (Index p = 0; p < nPar; p += 2)
|
for (Index p = 0; p < nPar; p += 2)
|
||||||
{
|
{
|
||||||
if (linearModel)
|
if ((modelPar.type == CorrelatorType::exp) or
|
||||||
{
|
(modelPar.type == CorrelatorType::cosh) or
|
||||||
globMin.setLowLimit(p, -10.*fabs(init(p)));
|
(modelPar.type == CorrelatorType::sinh))
|
||||||
globMin.setHighLimit(p, 10.*fabs(init(p)));
|
|
||||||
}
|
|
||||||
else if(constModel)
|
|
||||||
{
|
|
||||||
globMin.setLowLimit(p, -10*fabs(init(0)));
|
|
||||||
locMin.setLowLimit(p, -10*fabs(init(0)));
|
|
||||||
globMin.setHighLimit(p, 10*fabs(init(0)));
|
|
||||||
locMin.setHighLimit(p, 10*fabs(init(0)));
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
{
|
||||||
globMin.setLowLimit(p, 0.);
|
globMin.setLowLimit(p, 0.);
|
||||||
|
locMin.setLowLimit(p, 0.);
|
||||||
globMin.setHighLimit(p, 10.*init(p));
|
globMin.setHighLimit(p, 10.*init(p));
|
||||||
}
|
|
||||||
if(!constModel)
|
|
||||||
{
|
|
||||||
globMin.setLowLimit(p + 1, -10.*fabs(init(p + 1)));
|
globMin.setLowLimit(p + 1, -10.*fabs(init(p + 1)));
|
||||||
globMin.setHighLimit(p + 1, 10.*fabs(init(p + 1)));
|
globMin.setHighLimit(p + 1, 10.*fabs(init(p + 1)));
|
||||||
}
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
globMin.setLowLimit(p, -10*fabs(init(p)));
|
||||||
|
globMin.setHighLimit(p, 10*fabs(init(p)));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
globMin.setPrecision(0.001);
|
globMin.setPrecision(0.001);
|
||||||
globMin.setMaxIteration(100000);
|
globMin.setMaxIteration(100000);
|
||||||
@ -322,28 +200,28 @@ int main(int argc, char *argv[])
|
|||||||
locMin.setMaxIteration(1000000);
|
locMin.setMaxIteration(1000000);
|
||||||
locMin.setVerbosity(verbosity);
|
locMin.setVerbosity(verbosity);
|
||||||
|
|
||||||
// fit /////////////////////////////////////////////////////////////////////
|
// standard fit ////////////////////////////////////////////////////////////
|
||||||
if (!doScan)
|
if (!doScan)
|
||||||
{
|
{
|
||||||
|
// fit *****************************************************************
|
||||||
SampleFitResult fit;
|
SampleFitResult fit;
|
||||||
|
|
||||||
setFitRange(data, ti, tf, thinning, nt);
|
fitter.setFitRange(ti, tf);
|
||||||
if (doCorr)
|
if (doCorr)
|
||||||
{
|
{
|
||||||
cout << "-- uncorrelated fit..." << endl;
|
cout << "-- uncorrelated fit..." << endl;
|
||||||
}
|
}
|
||||||
cout << "using model '" << model << "'" << endl;
|
cout << "using model '" << model << "'" << endl;
|
||||||
data.setSvdTolerance(svdTol);
|
fitter.setCorrelation(false);
|
||||||
data.assumeYYCorrelated(false, 0, 0);
|
fit = fitter.fit(unCorrMin, init);
|
||||||
fit = data.fit(unCorrMin, init, mod);
|
|
||||||
fit.print();
|
fit.print();
|
||||||
if (doCorr)
|
if (doCorr)
|
||||||
{
|
{
|
||||||
cout << "-- correlated fit..." << endl;
|
cout << "-- correlated fit..." << endl;
|
||||||
cout << "using model '" << model << "'" << endl;
|
cout << "using model '" << model << "'" << endl;
|
||||||
init = fit[central];
|
init = fit[central];
|
||||||
data.assumeYYCorrelated(true, 0, 0);
|
fitter.setCorrelation(true);
|
||||||
fit = data.fit(locMin, init, mod);
|
fit = fitter.fit(locMin, init);
|
||||||
fit.print();
|
fit.print();
|
||||||
}
|
}
|
||||||
if (!outFileName.empty())
|
if (!outFileName.empty())
|
||||||
@ -353,84 +231,50 @@ int main(int argc, char *argv[])
|
|||||||
// plots ***************************************************************
|
// plots ***************************************************************
|
||||||
if (doPlot)
|
if (doPlot)
|
||||||
{
|
{
|
||||||
if (!constModel)
|
DMatSample tvec(nSample);
|
||||||
|
|
||||||
|
tvec.fill(DVec::LinSpaced(nt, 0, nt - 1));
|
||||||
|
if (modelPar.type != CorrelatorType::cst)
|
||||||
{
|
{
|
||||||
Plot p;
|
Plot p;
|
||||||
|
|
||||||
p << PlotRange(Axis::x, 0, nt - 1);
|
p << PlotRange(Axis::x, 0, nt - 1);
|
||||||
if (!linearModel and !constModel)
|
if ((modelPar.type == CorrelatorType::exp) or
|
||||||
|
(modelPar.type == CorrelatorType::cosh) or
|
||||||
|
(modelPar.type == CorrelatorType::sinh))
|
||||||
{
|
{
|
||||||
p << LogScale(Axis::y);
|
p << LogScale(Axis::y);
|
||||||
}
|
}
|
||||||
p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1);
|
p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1);
|
||||||
p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1);
|
p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1);
|
||||||
p << Color("rgb 'red'") << PlotData(data.getData());
|
p << Color("rgb 'red'") << PlotData(fitter.data().getData());
|
||||||
|
p << Label("t/a", Axis::x) << Caption("Correlator");
|
||||||
p.display();
|
p.display();
|
||||||
if(savePlot != "")
|
if(savePlot != "")
|
||||||
{
|
{
|
||||||
p.save(savePlot + "_corr");
|
p.save(savePlot + "_corr");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
if (modelPar.type != CorrelatorType::undefined)
|
||||||
{
|
{
|
||||||
Plot p;
|
Plot p;
|
||||||
DMatSample effMass(nSample);
|
EffectiveMass effMass(modelPar.type);
|
||||||
DVec effMassT, fitErr;
|
DMatSample em;
|
||||||
Index maxT = (coshModel) ? (nt - 2) : (nt - 1);
|
DVec fitErr, emtvec;
|
||||||
double e0, e0Err;
|
double e0, e0Err;
|
||||||
|
|
||||||
effMass.resizeMat(maxT, 1);
|
emtvec = effMass.getTime(nt);
|
||||||
effMassT.setLinSpaced(maxT, 0, maxT-1);
|
em = effMass(corr);
|
||||||
fitErr = fit.variance().cwiseSqrt();
|
fitErr = fit.variance().cwiseSqrt();
|
||||||
e0 = fit[central](0);
|
e0 = fit[central](0);
|
||||||
e0Err = fitErr(0);
|
e0Err = fitErr(0);
|
||||||
if (coshModel or sinhModel)
|
|
||||||
{
|
|
||||||
FOR_STAT_ARRAY(effMass, s)
|
|
||||||
{
|
|
||||||
for (Index t = 1; t < nt - 1; ++t)
|
|
||||||
{
|
|
||||||
effMass[s](t - 1) = acosh((corr[s](t-1) + corr[s](t+1))
|
|
||||||
/(2.*corr[s](t)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else if (linearModel)
|
|
||||||
{
|
|
||||||
FOR_STAT_ARRAY(effMass, s)
|
|
||||||
{
|
|
||||||
for (Index t = 0; t < nt - 1; ++t)
|
|
||||||
{
|
|
||||||
effMass[s](t) = corr[s](t) - corr[s](t+1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else if (constModel)
|
|
||||||
{
|
|
||||||
FOR_STAT_ARRAY(effMass, s)
|
|
||||||
{
|
|
||||||
for (Index t = 0; t < nt - 1; ++t)
|
|
||||||
{
|
|
||||||
effMass[s](t) = corr[s](t);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
FOR_STAT_ARRAY(effMass, s)
|
|
||||||
{
|
|
||||||
for (Index t = 1; t < nt; ++t)
|
|
||||||
{
|
|
||||||
effMass[s](t - 1) = log(corr[s](t-1)/corr[s](t));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
p.reset();
|
p.reset();
|
||||||
p << PlotRange(Axis::x, 0, maxT);
|
p << PlotRange(Axis::x, 0, nt - 1);
|
||||||
p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err);
|
p << PlotRange(Axis::y, e0 - 30.*e0Err, e0 + 30.*e0Err);
|
||||||
p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err);
|
p << Color("rgb 'blue'") << PlotBand(0, nt - 1, e0 - e0Err, e0 + e0Err);
|
||||||
p << Color("rgb 'blue'") << PlotHLine(e0);
|
p << Color("rgb 'blue'") << PlotHLine(e0);
|
||||||
p << Color("rgb 'red'") << PlotData(effMassT, effMass);
|
p << Color("rgb 'red'") << PlotData(emtvec, em);
|
||||||
p << Caption("Effective Mass");
|
p << Label("t/a", Axis::x) << Caption("Effective Mass");
|
||||||
p.display();
|
p.display();
|
||||||
if(savePlot != "")
|
if(savePlot != "")
|
||||||
{
|
{
|
||||||
@ -440,16 +284,19 @@ int main(int argc, char *argv[])
|
|||||||
if (doHeatmap)
|
if (doHeatmap)
|
||||||
{
|
{
|
||||||
Plot p;
|
Plot p;
|
||||||
Index n = data.getFitVarMat().rows();
|
Index n = fitter.data().getFitVarMat().rows();
|
||||||
DMat id = DMat::Identity(n, n);
|
DMat id = DMat::Identity(n, n),
|
||||||
|
var = fitter.data().getFitVarMat();
|
||||||
|
|
||||||
p << PlotMatrix(Math::varToCorr(data.getFitVarMat()));
|
p << PlotMatrix(Math::varToCorr(var));
|
||||||
p << Caption("correlation matrix");
|
p << Caption("correlation matrix");
|
||||||
p.display();
|
p.display();
|
||||||
if (svdTol > 0.)
|
if (svdTol > 0.)
|
||||||
{
|
{
|
||||||
|
DMat proj = id - var*fitter.data().getFitVarMatPInv();
|
||||||
|
|
||||||
p.reset();
|
p.reset();
|
||||||
p << PlotMatrix(id - data.getFitVarMat()*data.getFitVarMatPInv());
|
p << PlotMatrix(proj);
|
||||||
p << Caption("singular space projector");
|
p << Caption("singular space projector");
|
||||||
p.display();
|
p.display();
|
||||||
}
|
}
|
||||||
@ -460,8 +307,9 @@ int main(int argc, char *argv[])
|
|||||||
// scan fits ///////////////////////////////////////////////////////////////
|
// scan fits ///////////////////////////////////////////////////////////////
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
|
// fits ****************************************************************
|
||||||
Index nFit = 0, f = 0, ti0 = ti + (tf - ti)/4, tf0 = tf - (tf - ti)/4,
|
Index nFit = 0, f = 0, ti0 = ti + (tf - ti)/4, tf0 = tf - (tf - ti)/4,
|
||||||
matSize = tf - ti - nPar + 1;
|
matSize = tf - ti + 1;
|
||||||
DMat err, pVal(matSize, matSize), relErr(matSize, matSize),
|
DMat err, pVal(matSize, matSize), relErr(matSize, matSize),
|
||||||
ccdf(matSize, matSize), val(matSize, matSize);
|
ccdf(matSize, matSize), val(matSize, matSize);
|
||||||
map<double, TwoPtFit> fit;
|
map<double, TwoPtFit> fit;
|
||||||
@ -474,14 +322,13 @@ int main(int argc, char *argv[])
|
|||||||
<< endl;
|
<< endl;
|
||||||
thinning = 1;
|
thinning = 1;
|
||||||
}
|
}
|
||||||
setFitRange(data, ti0, tf0, thinning, nt);
|
fitter.setFitRange(ti0, tf0);
|
||||||
data.setSvdTolerance(svdTol);
|
fitter.setCorrelation(false);
|
||||||
data.assumeYYCorrelated(false, 0, 0);
|
tmpFit = fitter.fit(unCorrMin, init);
|
||||||
tmpFit = data.fit(unCorrMin, init, mod);
|
|
||||||
tmpFit.print();
|
tmpFit.print();
|
||||||
cout << "-- scanning all possible fit ranges..." << endl;
|
cout << "-- scanning all possible fit ranges..." << endl;
|
||||||
init = tmpFit[central];
|
init = tmpFit[central];
|
||||||
data.assumeYYCorrelated(doCorr, 0, 0);
|
fitter.setCorrelation(doCorr);
|
||||||
pVal.fill(Math::nan);
|
pVal.fill(Math::nan);
|
||||||
relErr.fill(Math::nan);
|
relErr.fill(Math::nan);
|
||||||
val.fill(Math::nan);
|
val.fill(Math::nan);
|
||||||
@ -496,8 +343,8 @@ int main(int argc, char *argv[])
|
|||||||
{
|
{
|
||||||
Index i = ta - ti, j = tb - ti;
|
Index i = ta - ti, j = tb - ti;
|
||||||
|
|
||||||
setFitRange(data, ta, tb, thinning, nt);
|
fitter.setFitRange(ta, tb);
|
||||||
tmpFit = data.fit(locMin, init, mod);
|
tmpFit = fitter.fit(locMin, init);
|
||||||
err = tmpFit.variance().cwiseSqrt();
|
err = tmpFit.variance().cwiseSqrt();
|
||||||
pVal(i, j) = tmpFit.getPValue();
|
pVal(i, j) = tmpFit.getPValue();
|
||||||
ccdf(i, j) = tmpFit.getCcdf();
|
ccdf(i, j) = tmpFit.getCcdf();
|
||||||
@ -531,8 +378,8 @@ int main(int argc, char *argv[])
|
|||||||
|
|
||||||
p << PlotMatrix(pVal);
|
p << PlotMatrix(pVal);
|
||||||
p << Caption("p-value matrix");
|
p << Caption("p-value matrix");
|
||||||
p << Label("tMin - " + strFrom(ti), Axis::x);
|
p << Label("tMax - " + strFrom(ti), Axis::x);
|
||||||
p << Label("tMax - " + strFrom(ti), Axis::y);
|
p << Label("tMin - " + strFrom(ti), Axis::y);
|
||||||
p.display();
|
p.display();
|
||||||
if(savePlot != "")
|
if(savePlot != "")
|
||||||
{
|
{
|
||||||
@ -541,8 +388,8 @@ int main(int argc, char *argv[])
|
|||||||
p.reset();
|
p.reset();
|
||||||
p << PlotMatrix(relErr);
|
p << PlotMatrix(relErr);
|
||||||
p << Caption("Relative error matrix");
|
p << Caption("Relative error matrix");
|
||||||
p << Label("tMin - " + strFrom(ti), Axis::x);
|
p << Label("tMax - " + strFrom(ti), Axis::x);
|
||||||
p << Label("tMax - " + strFrom(ti), Axis::y);
|
p << Label("tMin - " + strFrom(ti), Axis::y);
|
||||||
p.display();
|
p.display();
|
||||||
if(savePlot != "")
|
if(savePlot != "")
|
||||||
{
|
{
|
||||||
@ -551,8 +398,8 @@ int main(int argc, char *argv[])
|
|||||||
p.reset();
|
p.reset();
|
||||||
p << PlotMatrix(val);
|
p << PlotMatrix(val);
|
||||||
p << Caption("Fit result matrix");
|
p << Caption("Fit result matrix");
|
||||||
p << Label("tMin - " + strFrom(ti), Axis::x);
|
p << Label("tMax - " + strFrom(ti), Axis::x);
|
||||||
p << Label("tMax - " + strFrom(ti), Axis::y);
|
p << Label("tMin - " + strFrom(ti), Axis::y);
|
||||||
p.display();
|
p.display();
|
||||||
if(savePlot != "")
|
if(savePlot != "")
|
||||||
{
|
{
|
||||||
@ -561,8 +408,8 @@ int main(int argc, char *argv[])
|
|||||||
p.reset();
|
p.reset();
|
||||||
p << PlotMatrix(ccdf);
|
p << PlotMatrix(ccdf);
|
||||||
p << Caption("chi^2 CCDF matrix");
|
p << Caption("chi^2 CCDF matrix");
|
||||||
p << Label("tMin - " + strFrom(ti), Axis::x);
|
p << Label("tMax - " + strFrom(ti), Axis::x);
|
||||||
p << Label("tMax - " + strFrom(ti), Axis::y);
|
p << Label("tMin - " + strFrom(ti), Axis::y);
|
||||||
p.display();
|
p.display();
|
||||||
if(savePlot != "")
|
if(savePlot != "")
|
||||||
{
|
{
|
||||||
|
Loading…
Reference in New Issue
Block a user