diff --git a/lib/Physics/CorrelatorFitter.cpp b/lib/Physics/CorrelatorFitter.cpp index af7b4f3..e450ab2 100644 --- a/lib/Physics/CorrelatorFitter.cpp +++ b/lib/Physics/CorrelatorFitter.cpp @@ -253,16 +253,39 @@ DMatSample CorrelatorUtils::shift(const DMatSample &c, const Index ts) } } -DMatSample CorrelatorUtils::fold(const DMatSample &c) +DMatSample CorrelatorUtils::fold(const DMatSample &c, const CorrelatorModels::ModelPar &par) { const Index nt = c[central].rows(); DMatSample buf = c; - - FOR_STAT_ARRAY(buf, s) + int sign; + bool fold = false; + + switch (par.type) { - for (Index t = 0; t < nt; ++t) + case CorrelatorType::cosh: + case CorrelatorType::cst: + sign = 1; + fold = true; + break; + case CorrelatorType::sinh: + sign = -1; + fold = true; + break; + case CorrelatorType::linear: + cout << "Linear model is asymmetric: will not fold." << endl; + break; + default: + break; + } + + if (fold) + { + FOR_STAT_ARRAY(buf, s) { - buf[s](t) = 0.5*(c[s](t) + c[s]((nt - t) % nt)); + for (Index t = 0; t < nt; ++t) + { + buf[s](t) = 0.5*(c[s](t) + sign*c[s]((nt - t) % nt)); + } } } diff --git a/lib/Physics/CorrelatorFitter.hpp b/lib/Physics/CorrelatorFitter.hpp index 694fd9b..816c0ca 100644 --- a/lib/Physics/CorrelatorFitter.hpp +++ b/lib/Physics/CorrelatorFitter.hpp @@ -56,7 +56,7 @@ namespace CorrelatorModels namespace CorrelatorUtils { DMatSample shift(const DMatSample &c, const Index ts); - DMatSample fold(const DMatSample &c); + DMatSample fold(const DMatSample &c, const CorrelatorModels::ModelPar &par); DMatSample fourierTransform(const DMatSample &c, FFT &fft, const unsigned int dir = FFT::Forward); }; diff --git a/lib/Statistics/XYSampleData.cpp b/lib/Statistics/XYSampleData.cpp index 6e2d2d6..19342c9 100644 --- a/lib/Statistics/XYSampleData.cpp +++ b/lib/Statistics/XYSampleData.cpp @@ -234,6 +234,21 @@ DVec XYSampleData::getYError(const Index j) return data_.getYError(j); } +bool XYSampleData::checkFit() +{ + return goodFit_; +} + +void XYSampleData::checkChi2PerDof(double Chi2PerDof) +{ + if(Chi2PerDof >= 2 or Chi2PerDof < 0 or isnan(Chi2PerDof)) + { + goodFit_ = false; + cerr << "chi2PerDof = " << Chi2PerDof << ". Aborting fit now." << endl; + } + +} + // get total fit variance matrix and its pseudo-inverse //////////////////////// const DMat & XYSampleData::getFitVarMat(void) { @@ -292,24 +307,34 @@ SampleFitResult XYSampleData::fit(std::vector &minimizer, result.resize(nSample_); result.chi2_.resize(nSample_); result.model_.resize(v.size()); + double chi2PerDof; + goodFit_ = true; FOR_STAT_ARRAY(result, s) { - setDataToSample(s); - if (s == central) + if(goodFit_) { - sampleResult = data_.fit(minimizer, initCopy, v); - initCopy = sampleResult.segment(0, initCopy.size()); - } - else - { - sampleResult = data_.fit(*(minimizer.back()), initCopy, v); - } - result[s] = sampleResult; - result.chi2_[s] = sampleResult.getChi2(); - for (unsigned int j = 0; j < v.size(); ++j) - { - result.model_[j].resize(nSample_); - result.model_[j][s] = sampleResult.getModel(j); + setDataToSample(s); + if (s == central) + { + sampleResult = data_.fit(minimizer, initCopy, v); + initCopy = sampleResult.segment(0, initCopy.size()); + chi2PerDof = sampleResult.getChi2PerDof(); + checkChi2PerDof(chi2PerDof); + } + else + { + sampleResult = data_.fit(*(minimizer.back()), initCopy, v); + chi2PerDof = sampleResult.getChi2PerDof(); + checkChi2PerDof(chi2PerDof); + } + result[s] = sampleResult; + result.chi2_[s] = sampleResult.getChi2(); + for (unsigned int j = 0; j < v.size(); ++j) + { + result.model_[j].resize(nSample_); + result.model_[j][s] = sampleResult.getModel(j); + + } } } result.nPar_ = sampleResult.getNPar(); diff --git a/lib/Statistics/XYSampleData.hpp b/lib/Statistics/XYSampleData.hpp index 6cba855..a66c9dd 100644 --- a/lib/Statistics/XYSampleData.hpp +++ b/lib/Statistics/XYSampleData.hpp @@ -91,6 +91,8 @@ public: const DMat & getXYVar(const Index i, const Index j); DVec getXError(const Index i); DVec getYError(const Index j); + bool checkFit(); // check fit candidate based on chi2PerDof + void checkChi2PerDof(double Chi2PerDof); // get total fit variance matrix and its pseudo-inverse const DMat & getFitVarMat(void); const DMat & getFitVarMatPInv(void); @@ -133,6 +135,7 @@ private: Index nSample_, dataSample_{central}; bool initData_{true}, computeVarMat_{true}; bool initXMap_{true}; + bool goodFit_{true}; // used to break minimisation if central sample chi2PerDof is bad }; /****************************************************************************** diff --git a/physics/2pt-fit.cpp b/physics/2pt-fit.cpp index 2b19b4f..739f18f 100644 --- a/physics/2pt-fit.cpp +++ b/physics/2pt-fit.cpp @@ -110,10 +110,6 @@ int main(int argc, char *argv[]) nt = corr[central].rows(); corr = corr.block(0, 0, nt, 1); corr = CorrelatorUtils::shift(corr, shift); - if (fold) - { - corr = CorrelatorUtils::fold(corr); - } // make model ////////////////////////////////////////////////////////////// CorrelatorFitter fitter(corr); @@ -140,6 +136,11 @@ int main(int argc, char *argv[]) } } + if (fold) + { + corr = CorrelatorUtils::fold(corr,modelPar); + } + // fit ///////////////////////////////////////////////////////////////////// DVec init(nPar); NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM); diff --git a/utils/sample-fake.cpp b/utils/sample-fake.cpp index f34921b..5f1816c 100644 --- a/utils/sample-fake.cpp +++ b/utils/sample-fake.cpp @@ -18,30 +18,42 @@ */ #include +#include + using namespace std; using namespace Latan; int main(int argc, char *argv[]) { + OptParser opt; Index nSample; double val, err; string outFileName; - if (argc != 5) + opt.addOption("r", "seed" , OptParser::OptType::value, true, + "random generator seed (default: random)"); + opt.addOption("", "help" , OptParser::OptType::trigger, true, + "show this help message and exit"); + + bool parsed = opt.parse(argc, argv); + if (!parsed or (opt.getArgs().size() != 4) or opt.gotOption("help")) { cerr << "usage: " << argv[0]; cerr << " " << endl; + cerr << endl << "Possible options:" << endl << opt << endl; return EXIT_FAILURE; } + val = strTo(argv[1]); err = strTo(argv[2]); nSample = strTo(argv[3]); outFileName = argv[4]; random_device rd; - mt19937 gen(rd()); + SeedType seed = (opt.gotOption("r")) ? opt.optionValue("r") : rd(); + mt19937 gen(seed); normal_distribution<> dis(val, err); DSample res(nSample); @@ -59,4 +71,4 @@ int main(int argc, char *argv[]) Io::save(res, outFileName); return EXIT_SUCCESS; -} +} \ No newline at end of file