mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-10 00:45:36 +00:00
first implementation of the new XYSampleData (to be tested)
This commit is contained in:
parent
1e874ebb04
commit
1f2150a42a
@ -45,6 +45,7 @@ libLatAnalyze_la_SOURCES = \
|
|||||||
RootFinder.cpp \
|
RootFinder.cpp \
|
||||||
Solver.cpp \
|
Solver.cpp \
|
||||||
TabFunction.cpp \
|
TabFunction.cpp \
|
||||||
|
XYSampleData.cpp \
|
||||||
XYStatData.cpp \
|
XYStatData.cpp \
|
||||||
../config.h
|
../config.h
|
||||||
libLatAnalyze_ladir = $(pkgincludedir)
|
libLatAnalyze_ladir = $(pkgincludedir)
|
||||||
@ -79,6 +80,7 @@ libLatAnalyze_la_HEADERS = \
|
|||||||
TabFunction.hpp \
|
TabFunction.hpp \
|
||||||
Solver.hpp \
|
Solver.hpp \
|
||||||
StatArray.hpp \
|
StatArray.hpp \
|
||||||
|
XYSampleData.hpp \
|
||||||
XYStatData.hpp
|
XYStatData.hpp
|
||||||
if HAVE_MINUIT
|
if HAVE_MINUIT
|
||||||
libLatAnalyze_la_SOURCES += MinuitMinimizer.cpp
|
libLatAnalyze_la_SOURCES += MinuitMinimizer.cpp
|
||||||
|
361
lib/XYSampleData.cpp
Normal file
361
lib/XYSampleData.cpp
Normal file
@ -0,0 +1,361 @@
|
|||||||
|
/*
|
||||||
|
* XYSampleData.cpp, part of LatAnalyze 3
|
||||||
|
*
|
||||||
|
* Copyright (C) 2013 - 2016 Antonin Portelli
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <LatAnalyze/XYSampleData.hpp>
|
||||||
|
#include <LatAnalyze/includes.hpp>
|
||||||
|
#include <LatAnalyze/Math.hpp>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
using namespace Latan;
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* SampleFitResult implementation *
|
||||||
|
******************************************************************************/
|
||||||
|
double SampleFitResult::getChi2(const Index s) const
|
||||||
|
{
|
||||||
|
return chi2_[s];
|
||||||
|
}
|
||||||
|
|
||||||
|
const DSample & SampleFitResult::getChi2(const PlaceHolder ph __dumb) const
|
||||||
|
{
|
||||||
|
return chi2_;
|
||||||
|
}
|
||||||
|
|
||||||
|
double SampleFitResult::getChi2PerDof(const Index s) const
|
||||||
|
{
|
||||||
|
return chi2_[s]/getNDof();
|
||||||
|
}
|
||||||
|
|
||||||
|
DSample SampleFitResult::getChi2PerDof(const PlaceHolder ph __dumb) const
|
||||||
|
{
|
||||||
|
return chi2_/getNDof();
|
||||||
|
}
|
||||||
|
|
||||||
|
double SampleFitResult::getNDof(void) const
|
||||||
|
{
|
||||||
|
return static_cast<double>(nDof_);
|
||||||
|
}
|
||||||
|
|
||||||
|
double SampleFitResult::getPValue(const Index s) const
|
||||||
|
{
|
||||||
|
return Math::chi2PValue(getChi2(s), getNDof());
|
||||||
|
}
|
||||||
|
|
||||||
|
const DoubleFunction & SampleFitResult::getModel(const Index s,
|
||||||
|
const Index j) const
|
||||||
|
{
|
||||||
|
return model_[static_cast<unsigned int>(j)][s];
|
||||||
|
}
|
||||||
|
|
||||||
|
const DoubleFunctionSample & SampleFitResult::getModel(
|
||||||
|
const PlaceHolder ph __dumb,
|
||||||
|
const Index j) const
|
||||||
|
{
|
||||||
|
return model_[static_cast<unsigned int>(j)];
|
||||||
|
}
|
||||||
|
|
||||||
|
FitResult SampleFitResult::getFitResult(const Index s) const
|
||||||
|
{
|
||||||
|
FitResult fit;
|
||||||
|
|
||||||
|
fit = (*this)[s];
|
||||||
|
fit.chi2_ = getChi2();
|
||||||
|
fit.nDof_ = static_cast<Index>(getNDof());
|
||||||
|
fit.model_.resize(model_.size());
|
||||||
|
for (unsigned int k = 0; k < model_.size(); ++k)
|
||||||
|
{
|
||||||
|
fit.model_[k] = model_[k][s];
|
||||||
|
}
|
||||||
|
|
||||||
|
return fit;
|
||||||
|
}
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* XYSampleData implementation *
|
||||||
|
******************************************************************************/
|
||||||
|
// constructor /////////////////////////////////////////////////////////////////
|
||||||
|
XYSampleData::XYSampleData(const Index nSample)
|
||||||
|
: nSample_(nSample)
|
||||||
|
{}
|
||||||
|
|
||||||
|
// data access /////////////////////////////////////////////////////////////////
|
||||||
|
DSample & XYSampleData::x(const Index r, const Index i)
|
||||||
|
{
|
||||||
|
checkXIndex(r, i);
|
||||||
|
scheduleDataInit();
|
||||||
|
scheduleComputeVarMat();
|
||||||
|
|
||||||
|
return xData_[i][r];
|
||||||
|
}
|
||||||
|
|
||||||
|
const DSample & XYSampleData::x(const Index r, const Index i) const
|
||||||
|
{
|
||||||
|
checkXIndex(r, i);
|
||||||
|
|
||||||
|
return xData_[i][r];
|
||||||
|
}
|
||||||
|
|
||||||
|
DSample & XYSampleData::y(const Index k, const Index j)
|
||||||
|
{
|
||||||
|
checkYDim(j);
|
||||||
|
if (!pointExists(k, j))
|
||||||
|
{
|
||||||
|
registerDataPoint(k, j);
|
||||||
|
}
|
||||||
|
scheduleDataInit();
|
||||||
|
scheduleComputeVarMat();
|
||||||
|
|
||||||
|
return yData_[j][k];
|
||||||
|
}
|
||||||
|
|
||||||
|
const DSample & XYSampleData::y(const Index k, const Index j) const
|
||||||
|
{
|
||||||
|
checkPoint(k, j);
|
||||||
|
|
||||||
|
return yData_[j].at(k);
|
||||||
|
}
|
||||||
|
|
||||||
|
const DMat & XYSampleData::getXXVar(const Index i1, const Index i2)
|
||||||
|
{
|
||||||
|
checkXDim(i1);
|
||||||
|
checkXDim(i2);
|
||||||
|
computeVarMat();
|
||||||
|
|
||||||
|
return data_.getXXVar(i1, i2);
|
||||||
|
}
|
||||||
|
|
||||||
|
const DMat & XYSampleData::getYYVar(const Index j1, const Index j2)
|
||||||
|
{
|
||||||
|
checkYDim(j1);
|
||||||
|
checkYDim(j2);
|
||||||
|
computeVarMat();
|
||||||
|
|
||||||
|
return data_.getYYVar(j1, j2);
|
||||||
|
}
|
||||||
|
|
||||||
|
const DMat & XYSampleData::getXYVar(const Index i, const Index j)
|
||||||
|
{
|
||||||
|
checkXDim(i);
|
||||||
|
checkYDim(j);
|
||||||
|
computeVarMat();
|
||||||
|
|
||||||
|
return data_.getXYVar(i, j);
|
||||||
|
}
|
||||||
|
|
||||||
|
DVec XYSampleData::getXError(const Index i)
|
||||||
|
{
|
||||||
|
checkXDim(i);
|
||||||
|
computeVarMat();
|
||||||
|
|
||||||
|
return data_.getXError(i);
|
||||||
|
}
|
||||||
|
|
||||||
|
DVec XYSampleData::getYError(const Index j)
|
||||||
|
{
|
||||||
|
checkYDim(j);
|
||||||
|
computeVarMat();
|
||||||
|
|
||||||
|
return data_.getYError(j);
|
||||||
|
}
|
||||||
|
|
||||||
|
// get total fit variance matrix and its pseudo-inverse ////////////////////////
|
||||||
|
const DMat & XYSampleData::getFitVarMat(void)
|
||||||
|
{
|
||||||
|
computeVarMat();
|
||||||
|
|
||||||
|
return data_.getFitVarMat();
|
||||||
|
}
|
||||||
|
|
||||||
|
const DMat & XYSampleData::getFitVarMatPInv(void)
|
||||||
|
{
|
||||||
|
computeVarMat();
|
||||||
|
|
||||||
|
return data_.getFitVarMatPInv();
|
||||||
|
}
|
||||||
|
|
||||||
|
// set data to a particular sample /////////////////////////////////////////////
|
||||||
|
void XYSampleData::setDataToSample(const Index s)
|
||||||
|
{
|
||||||
|
if (initData_ or (s != dataSample_))
|
||||||
|
{
|
||||||
|
data_.copyInterface(*this);
|
||||||
|
for (Index i = 0; i < getNXDim(); ++i)
|
||||||
|
for (Index r = 0; r < getXSize(i); ++r)
|
||||||
|
{
|
||||||
|
data_.x(r, i) = xData_[i][r][s];
|
||||||
|
}
|
||||||
|
for (Index j = 0; j < getNXDim(); ++j)
|
||||||
|
for (auto &p: yData_[j])
|
||||||
|
{
|
||||||
|
data_.y(p.first, j) = p.second[s];
|
||||||
|
}
|
||||||
|
dataSample_ = s;
|
||||||
|
initData_ = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// get internal XYStatData /////////////////////////////////////////////////////
|
||||||
|
const XYStatData & XYSampleData::getData(void)
|
||||||
|
{
|
||||||
|
setDataToSample(central);
|
||||||
|
|
||||||
|
return data_;
|
||||||
|
}
|
||||||
|
|
||||||
|
// fit /////////////////////////////////////////////////////////////////////////
|
||||||
|
SampleFitResult XYSampleData::fit(Minimizer &minimizer, const DVec &init,
|
||||||
|
const std::vector<const DoubleModel *> &v)
|
||||||
|
{
|
||||||
|
computeVarMat();
|
||||||
|
|
||||||
|
SampleFitResult result;
|
||||||
|
FitResult sampleResult;
|
||||||
|
|
||||||
|
result.resize(nSample_);
|
||||||
|
result.chi2_.resize(nSample_);
|
||||||
|
FOR_STAT_ARRAY(result, s)
|
||||||
|
{
|
||||||
|
setDataToSample(s);
|
||||||
|
sampleResult = data_.fit(minimizer, init, v);
|
||||||
|
result[s] = sampleResult;
|
||||||
|
result.chi2_[s] = sampleResult.getChi2();
|
||||||
|
result.nDof_ = sampleResult.getNDof();
|
||||||
|
result.model_.resize(v.size());
|
||||||
|
for (unsigned int j = 0; j < v.size(); ++j)
|
||||||
|
{
|
||||||
|
result.model_[j].resize(nSample_);
|
||||||
|
result.model_[j][s] = sampleResult.getModel(j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// schedule data initilization from samples ////////////////////////////////////
|
||||||
|
void XYSampleData::scheduleDataInit(void)
|
||||||
|
{
|
||||||
|
initData_ = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// variance matrix computation /////////////////////////////////////////////////
|
||||||
|
void XYSampleData::scheduleComputeVarMat(void)
|
||||||
|
{
|
||||||
|
computeVarMat_ = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void XYSampleData::computeVarMat(void)
|
||||||
|
{
|
||||||
|
if (computeVarMat_)
|
||||||
|
{
|
||||||
|
// initialize data if necessary
|
||||||
|
setDataToSample(central);
|
||||||
|
|
||||||
|
// compute relevant sizes
|
||||||
|
Index size = 0, ySize = 0;
|
||||||
|
|
||||||
|
for (Index j = 0; j < getNYDim(); ++j)
|
||||||
|
{
|
||||||
|
size += getYSize(j);
|
||||||
|
}
|
||||||
|
ySize = size;
|
||||||
|
for (Index i = 0; i < getNXDim(); ++i)
|
||||||
|
{
|
||||||
|
size += getXSize(i);
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute total matrix
|
||||||
|
DMatSample z(nSample_, size, 1);
|
||||||
|
DMat var;
|
||||||
|
Index a = 0;
|
||||||
|
|
||||||
|
FOR_STAT_ARRAY(z, s)
|
||||||
|
{
|
||||||
|
for (Index j = 0; j < getNYDim(); ++j)
|
||||||
|
for (auto &p: yData_[j])
|
||||||
|
{
|
||||||
|
z[s](a, 0) = p.second[s];
|
||||||
|
a++;
|
||||||
|
}
|
||||||
|
for (Index i = 0; i < getNXDim(); ++i)
|
||||||
|
for (Index r = 0; r < getXSize(i); ++r)
|
||||||
|
{
|
||||||
|
z[s](a, 0) = xData_[i][r][s];
|
||||||
|
a++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
var = z.varianceMatrix();
|
||||||
|
|
||||||
|
// assign blocks to data
|
||||||
|
Index a1, a2;
|
||||||
|
|
||||||
|
a1 = ySize;
|
||||||
|
for (Index i1 = 0; i1 < getNXDim(); ++i1)
|
||||||
|
{
|
||||||
|
a2 = ySize;
|
||||||
|
for (Index i2 = 0; i2 < getNXDim(); ++i2)
|
||||||
|
{
|
||||||
|
data_.setXXVar(i1, i2,
|
||||||
|
var.block(a1, getXSize(i1), a2, getXSize(i2)));
|
||||||
|
a2 += getXSize(i2);
|
||||||
|
}
|
||||||
|
a1 += getXSize(i1);
|
||||||
|
}
|
||||||
|
a1 = 0;
|
||||||
|
for (Index j1 = 0; j1 < getNYDim(); ++j1)
|
||||||
|
{
|
||||||
|
a2 = 0;
|
||||||
|
for (Index j2 = 0; j2 < getNYDim(); ++j2)
|
||||||
|
{
|
||||||
|
data_.setYYVar(j1, j2,
|
||||||
|
var.block(a1, getYSize(j1), a2, getYSize(j2)));
|
||||||
|
a2 += getYSize(j2);
|
||||||
|
}
|
||||||
|
a1 += getYSize(j1);
|
||||||
|
}
|
||||||
|
a1 = ySize;
|
||||||
|
for (Index i = 0; i < getNXDim(); ++i)
|
||||||
|
{
|
||||||
|
a2 = 0;
|
||||||
|
for (Index j = 0; j < getNXDim(); ++j)
|
||||||
|
{
|
||||||
|
data_.setXYVar(i, j,
|
||||||
|
var.block(a1, getXSize(i), a2, getYSize(j)));
|
||||||
|
a2 += getYSize(j);
|
||||||
|
}
|
||||||
|
a1 += getXSize(i);
|
||||||
|
}
|
||||||
|
computeVarMat_ = false;
|
||||||
|
}
|
||||||
|
if (initVarMat())
|
||||||
|
{
|
||||||
|
data_.scheduleFitVarMatInit();
|
||||||
|
scheduleFitVarMatInit(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// create data /////////////////////////////////////////////////////////////////
|
||||||
|
void XYSampleData::createXData(const string name __dumb, const Index nData)
|
||||||
|
{
|
||||||
|
xData_.push_back(vector<DSample>(nData));
|
||||||
|
}
|
||||||
|
|
||||||
|
void XYSampleData::createYData(const string name __dumb)
|
||||||
|
{
|
||||||
|
yData_.push_back(map<Index, DSample>());
|
||||||
|
}
|
129
lib/XYSampleData.hpp
Normal file
129
lib/XYSampleData.hpp
Normal file
@ -0,0 +1,129 @@
|
|||||||
|
/*
|
||||||
|
* XYSampleData.hpp, part of LatAnalyze 3
|
||||||
|
*
|
||||||
|
* Copyright (C) 2013 - 2016 Antonin Portelli
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef Latan_XYSampleData_hpp_
|
||||||
|
#define Latan_XYSampleData_hpp_
|
||||||
|
|
||||||
|
#include <LatAnalyze/Global.hpp>
|
||||||
|
#include <LatAnalyze/FitInterface.hpp>
|
||||||
|
#include <LatAnalyze/Minimizer.hpp>
|
||||||
|
#include <LatAnalyze/MatSample.hpp>
|
||||||
|
#include <LatAnalyze/Model.hpp>
|
||||||
|
#include <LatAnalyze/XYStatData.hpp>
|
||||||
|
|
||||||
|
BEGIN_LATAN_NAMESPACE
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* object for fit result *
|
||||||
|
******************************************************************************/
|
||||||
|
class SampleFitResult: public DMatSample
|
||||||
|
{
|
||||||
|
friend class XYSampleData;
|
||||||
|
public:
|
||||||
|
// constructors
|
||||||
|
SampleFitResult(void) = default;
|
||||||
|
EIGEN_EXPR_CTOR(SampleFitResult, SampleFitResult, DMatSample, ArrayExpr)
|
||||||
|
// destructor
|
||||||
|
virtual ~SampleFitResult(void) = default;
|
||||||
|
// access
|
||||||
|
double getChi2(const Index s = central) const;
|
||||||
|
const DSample & getChi2(const PlaceHolder ph) const;
|
||||||
|
double getChi2PerDof(const Index s = central) const;
|
||||||
|
DSample getChi2PerDof(const PlaceHolder ph) const;
|
||||||
|
double getNDof(void) const;
|
||||||
|
double getPValue(const Index s = central) const;
|
||||||
|
const DoubleFunction & getModel(const Index s = central,
|
||||||
|
const Index j = 0) const;
|
||||||
|
const DoubleFunctionSample & getModel(const PlaceHolder ph,
|
||||||
|
const Index j = 0) const;
|
||||||
|
FitResult getFitResult(const Index s = central) const;
|
||||||
|
private:
|
||||||
|
DSample chi2_;
|
||||||
|
double nDof_{0.};
|
||||||
|
std::vector<DoubleFunctionSample> model_;
|
||||||
|
};
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* XYSampleData *
|
||||||
|
******************************************************************************/
|
||||||
|
class XYSampleData: public FitInterface
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
// constructor
|
||||||
|
explicit XYSampleData(const Index nSample);
|
||||||
|
// destructor
|
||||||
|
virtual ~XYSampleData(void) = default;
|
||||||
|
// data access
|
||||||
|
DSample & x(const Index r, const Index i = 0);
|
||||||
|
const DSample & x(const Index r, const Index i = 0) const;
|
||||||
|
DSample & y(const Index k, const Index j = 0);
|
||||||
|
const DSample & y(const Index k, const Index j = 0) const;
|
||||||
|
const DMat & getXXVar(const Index i1, const Index i2);
|
||||||
|
const DMat & getYYVar(const Index j1, const Index j2);
|
||||||
|
const DMat & getXYVar(const Index i, const Index j);
|
||||||
|
DVec getXError(const Index i);
|
||||||
|
DVec getYError(const Index j);
|
||||||
|
// get total fit variance matrix and its pseudo-inverse
|
||||||
|
const DMat & getFitVarMat(void);
|
||||||
|
const DMat & getFitVarMatPInv(void);
|
||||||
|
// set data to a particular sample
|
||||||
|
void setDataToSample(const Index s);
|
||||||
|
// get internal XYStatData
|
||||||
|
const XYStatData & getData(void);
|
||||||
|
// fit
|
||||||
|
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
|
||||||
|
const std::vector<const DoubleModel *> &v);
|
||||||
|
template <typename... Mods>
|
||||||
|
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
|
||||||
|
const DoubleModel &model, const Mods... models);
|
||||||
|
private:
|
||||||
|
// schedule data initilization from samples
|
||||||
|
void scheduleDataInit(void);
|
||||||
|
// variance matrix computation
|
||||||
|
void scheduleComputeVarMat(void);
|
||||||
|
void computeVarMat(void);
|
||||||
|
// create data
|
||||||
|
virtual void createXData(const std::string name, const Index nData);
|
||||||
|
virtual void createYData(const std::string name);
|
||||||
|
private:
|
||||||
|
std::vector<std::map<Index, DSample>> yData_;
|
||||||
|
std::vector<std::vector<DSample>> xData_;
|
||||||
|
XYStatData data_;
|
||||||
|
Index nSample_, dataSample_{central};
|
||||||
|
bool initData_{true}, computeVarMat_{true};
|
||||||
|
};
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* XYSampleData template implementation *
|
||||||
|
******************************************************************************/
|
||||||
|
template <typename... Ts>
|
||||||
|
SampleFitResult XYSampleData::fit(Minimizer &minimizer, const DVec &init,
|
||||||
|
const DoubleModel &model, const Ts... models)
|
||||||
|
{
|
||||||
|
static_assert(static_or<std::is_assignable<DoubleModel &, Ts>::value...>::value,
|
||||||
|
"model arguments are not compatible with DoubleModel &");
|
||||||
|
|
||||||
|
std::vector<const DoubleModel *> modelVector{&model, &models...};
|
||||||
|
|
||||||
|
return fit(minimizer, init, modelVector);
|
||||||
|
}
|
||||||
|
|
||||||
|
END_LATAN_NAMESPACE
|
||||||
|
|
||||||
|
#endif // Latan_XYSampleData_hpp_
|
Loading…
Reference in New Issue
Block a user