1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 00:45:36 +00:00

first implementation of the new XYSampleData (to be tested)

This commit is contained in:
Antonin Portelli 2016-03-16 18:33:51 +00:00
parent 1e874ebb04
commit 1f2150a42a
3 changed files with 492 additions and 0 deletions

View File

@ -45,6 +45,7 @@ libLatAnalyze_la_SOURCES = \
RootFinder.cpp \
Solver.cpp \
TabFunction.cpp \
XYSampleData.cpp \
XYStatData.cpp \
../config.h
libLatAnalyze_ladir = $(pkgincludedir)
@ -79,6 +80,7 @@ libLatAnalyze_la_HEADERS = \
TabFunction.hpp \
Solver.hpp \
StatArray.hpp \
XYSampleData.hpp \
XYStatData.hpp
if HAVE_MINUIT
libLatAnalyze_la_SOURCES += MinuitMinimizer.cpp

361
lib/XYSampleData.cpp Normal file
View File

@ -0,0 +1,361 @@
/*
* XYSampleData.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2016 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/XYSampleData.hpp>
#include <LatAnalyze/includes.hpp>
#include <LatAnalyze/Math.hpp>
using namespace std;
using namespace Latan;
/******************************************************************************
* SampleFitResult implementation *
******************************************************************************/
double SampleFitResult::getChi2(const Index s) const
{
return chi2_[s];
}
const DSample & SampleFitResult::getChi2(const PlaceHolder ph __dumb) const
{
return chi2_;
}
double SampleFitResult::getChi2PerDof(const Index s) const
{
return chi2_[s]/getNDof();
}
DSample SampleFitResult::getChi2PerDof(const PlaceHolder ph __dumb) const
{
return chi2_/getNDof();
}
double SampleFitResult::getNDof(void) const
{
return static_cast<double>(nDof_);
}
double SampleFitResult::getPValue(const Index s) const
{
return Math::chi2PValue(getChi2(s), getNDof());
}
const DoubleFunction & SampleFitResult::getModel(const Index s,
const Index j) const
{
return model_[static_cast<unsigned int>(j)][s];
}
const DoubleFunctionSample & SampleFitResult::getModel(
const PlaceHolder ph __dumb,
const Index j) const
{
return model_[static_cast<unsigned int>(j)];
}
FitResult SampleFitResult::getFitResult(const Index s) const
{
FitResult fit;
fit = (*this)[s];
fit.chi2_ = getChi2();
fit.nDof_ = static_cast<Index>(getNDof());
fit.model_.resize(model_.size());
for (unsigned int k = 0; k < model_.size(); ++k)
{
fit.model_[k] = model_[k][s];
}
return fit;
}
/******************************************************************************
* XYSampleData implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
XYSampleData::XYSampleData(const Index nSample)
: nSample_(nSample)
{}
// data access /////////////////////////////////////////////////////////////////
DSample & XYSampleData::x(const Index r, const Index i)
{
checkXIndex(r, i);
scheduleDataInit();
scheduleComputeVarMat();
return xData_[i][r];
}
const DSample & XYSampleData::x(const Index r, const Index i) const
{
checkXIndex(r, i);
return xData_[i][r];
}
DSample & XYSampleData::y(const Index k, const Index j)
{
checkYDim(j);
if (!pointExists(k, j))
{
registerDataPoint(k, j);
}
scheduleDataInit();
scheduleComputeVarMat();
return yData_[j][k];
}
const DSample & XYSampleData::y(const Index k, const Index j) const
{
checkPoint(k, j);
return yData_[j].at(k);
}
const DMat & XYSampleData::getXXVar(const Index i1, const Index i2)
{
checkXDim(i1);
checkXDim(i2);
computeVarMat();
return data_.getXXVar(i1, i2);
}
const DMat & XYSampleData::getYYVar(const Index j1, const Index j2)
{
checkYDim(j1);
checkYDim(j2);
computeVarMat();
return data_.getYYVar(j1, j2);
}
const DMat & XYSampleData::getXYVar(const Index i, const Index j)
{
checkXDim(i);
checkYDim(j);
computeVarMat();
return data_.getXYVar(i, j);
}
DVec XYSampleData::getXError(const Index i)
{
checkXDim(i);
computeVarMat();
return data_.getXError(i);
}
DVec XYSampleData::getYError(const Index j)
{
checkYDim(j);
computeVarMat();
return data_.getYError(j);
}
// get total fit variance matrix and its pseudo-inverse ////////////////////////
const DMat & XYSampleData::getFitVarMat(void)
{
computeVarMat();
return data_.getFitVarMat();
}
const DMat & XYSampleData::getFitVarMatPInv(void)
{
computeVarMat();
return data_.getFitVarMatPInv();
}
// set data to a particular sample /////////////////////////////////////////////
void XYSampleData::setDataToSample(const Index s)
{
if (initData_ or (s != dataSample_))
{
data_.copyInterface(*this);
for (Index i = 0; i < getNXDim(); ++i)
for (Index r = 0; r < getXSize(i); ++r)
{
data_.x(r, i) = xData_[i][r][s];
}
for (Index j = 0; j < getNXDim(); ++j)
for (auto &p: yData_[j])
{
data_.y(p.first, j) = p.second[s];
}
dataSample_ = s;
initData_ = false;
}
}
// get internal XYStatData /////////////////////////////////////////////////////
const XYStatData & XYSampleData::getData(void)
{
setDataToSample(central);
return data_;
}
// fit /////////////////////////////////////////////////////////////////////////
SampleFitResult XYSampleData::fit(Minimizer &minimizer, const DVec &init,
const std::vector<const DoubleModel *> &v)
{
computeVarMat();
SampleFitResult result;
FitResult sampleResult;
result.resize(nSample_);
result.chi2_.resize(nSample_);
FOR_STAT_ARRAY(result, s)
{
setDataToSample(s);
sampleResult = data_.fit(minimizer, init, v);
result[s] = sampleResult;
result.chi2_[s] = sampleResult.getChi2();
result.nDof_ = sampleResult.getNDof();
result.model_.resize(v.size());
for (unsigned int j = 0; j < v.size(); ++j)
{
result.model_[j].resize(nSample_);
result.model_[j][s] = sampleResult.getModel(j);
}
}
return result;
}
// schedule data initilization from samples ////////////////////////////////////
void XYSampleData::scheduleDataInit(void)
{
initData_ = true;
}
// variance matrix computation /////////////////////////////////////////////////
void XYSampleData::scheduleComputeVarMat(void)
{
computeVarMat_ = true;
}
void XYSampleData::computeVarMat(void)
{
if (computeVarMat_)
{
// initialize data if necessary
setDataToSample(central);
// compute relevant sizes
Index size = 0, ySize = 0;
for (Index j = 0; j < getNYDim(); ++j)
{
size += getYSize(j);
}
ySize = size;
for (Index i = 0; i < getNXDim(); ++i)
{
size += getXSize(i);
}
// compute total matrix
DMatSample z(nSample_, size, 1);
DMat var;
Index a = 0;
FOR_STAT_ARRAY(z, s)
{
for (Index j = 0; j < getNYDim(); ++j)
for (auto &p: yData_[j])
{
z[s](a, 0) = p.second[s];
a++;
}
for (Index i = 0; i < getNXDim(); ++i)
for (Index r = 0; r < getXSize(i); ++r)
{
z[s](a, 0) = xData_[i][r][s];
a++;
}
}
var = z.varianceMatrix();
// assign blocks to data
Index a1, a2;
a1 = ySize;
for (Index i1 = 0; i1 < getNXDim(); ++i1)
{
a2 = ySize;
for (Index i2 = 0; i2 < getNXDim(); ++i2)
{
data_.setXXVar(i1, i2,
var.block(a1, getXSize(i1), a2, getXSize(i2)));
a2 += getXSize(i2);
}
a1 += getXSize(i1);
}
a1 = 0;
for (Index j1 = 0; j1 < getNYDim(); ++j1)
{
a2 = 0;
for (Index j2 = 0; j2 < getNYDim(); ++j2)
{
data_.setYYVar(j1, j2,
var.block(a1, getYSize(j1), a2, getYSize(j2)));
a2 += getYSize(j2);
}
a1 += getYSize(j1);
}
a1 = ySize;
for (Index i = 0; i < getNXDim(); ++i)
{
a2 = 0;
for (Index j = 0; j < getNXDim(); ++j)
{
data_.setXYVar(i, j,
var.block(a1, getXSize(i), a2, getYSize(j)));
a2 += getYSize(j);
}
a1 += getXSize(i);
}
computeVarMat_ = false;
}
if (initVarMat())
{
data_.scheduleFitVarMatInit();
scheduleFitVarMatInit(false);
}
}
// create data /////////////////////////////////////////////////////////////////
void XYSampleData::createXData(const string name __dumb, const Index nData)
{
xData_.push_back(vector<DSample>(nData));
}
void XYSampleData::createYData(const string name __dumb)
{
yData_.push_back(map<Index, DSample>());
}

129
lib/XYSampleData.hpp Normal file
View File

@ -0,0 +1,129 @@
/*
* XYSampleData.hpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2016 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef Latan_XYSampleData_hpp_
#define Latan_XYSampleData_hpp_
#include <LatAnalyze/Global.hpp>
#include <LatAnalyze/FitInterface.hpp>
#include <LatAnalyze/Minimizer.hpp>
#include <LatAnalyze/MatSample.hpp>
#include <LatAnalyze/Model.hpp>
#include <LatAnalyze/XYStatData.hpp>
BEGIN_LATAN_NAMESPACE
/******************************************************************************
* object for fit result *
******************************************************************************/
class SampleFitResult: public DMatSample
{
friend class XYSampleData;
public:
// constructors
SampleFitResult(void) = default;
EIGEN_EXPR_CTOR(SampleFitResult, SampleFitResult, DMatSample, ArrayExpr)
// destructor
virtual ~SampleFitResult(void) = default;
// access
double getChi2(const Index s = central) const;
const DSample & getChi2(const PlaceHolder ph) const;
double getChi2PerDof(const Index s = central) const;
DSample getChi2PerDof(const PlaceHolder ph) const;
double getNDof(void) const;
double getPValue(const Index s = central) const;
const DoubleFunction & getModel(const Index s = central,
const Index j = 0) const;
const DoubleFunctionSample & getModel(const PlaceHolder ph,
const Index j = 0) const;
FitResult getFitResult(const Index s = central) const;
private:
DSample chi2_;
double nDof_{0.};
std::vector<DoubleFunctionSample> model_;
};
/******************************************************************************
* XYSampleData *
******************************************************************************/
class XYSampleData: public FitInterface
{
public:
// constructor
explicit XYSampleData(const Index nSample);
// destructor
virtual ~XYSampleData(void) = default;
// data access
DSample & x(const Index r, const Index i = 0);
const DSample & x(const Index r, const Index i = 0) const;
DSample & y(const Index k, const Index j = 0);
const DSample & y(const Index k, const Index j = 0) const;
const DMat & getXXVar(const Index i1, const Index i2);
const DMat & getYYVar(const Index j1, const Index j2);
const DMat & getXYVar(const Index i, const Index j);
DVec getXError(const Index i);
DVec getYError(const Index j);
// get total fit variance matrix and its pseudo-inverse
const DMat & getFitVarMat(void);
const DMat & getFitVarMatPInv(void);
// set data to a particular sample
void setDataToSample(const Index s);
// get internal XYStatData
const XYStatData & getData(void);
// fit
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
const std::vector<const DoubleModel *> &v);
template <typename... Mods>
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
const DoubleModel &model, const Mods... models);
private:
// schedule data initilization from samples
void scheduleDataInit(void);
// variance matrix computation
void scheduleComputeVarMat(void);
void computeVarMat(void);
// create data
virtual void createXData(const std::string name, const Index nData);
virtual void createYData(const std::string name);
private:
std::vector<std::map<Index, DSample>> yData_;
std::vector<std::vector<DSample>> xData_;
XYStatData data_;
Index nSample_, dataSample_{central};
bool initData_{true}, computeVarMat_{true};
};
/******************************************************************************
* XYSampleData template implementation *
******************************************************************************/
template <typename... Ts>
SampleFitResult XYSampleData::fit(Minimizer &minimizer, const DVec &init,
const DoubleModel &model, const Ts... models)
{
static_assert(static_or<std::is_assignable<DoubleModel &, Ts>::value...>::value,
"model arguments are not compatible with DoubleModel &");
std::vector<const DoubleModel *> modelVector{&model, &models...};
return fit(minimizer, init, modelVector);
}
END_LATAN_NAMESPACE
#endif // Latan_XYSampleData_hpp_