1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2025-06-17 23:07:05 +01:00

remove new covariance routine regression code

This commit is contained in:
2021-12-20 01:29:29 +01:00
parent 57c6004797
commit 24a7b9c203
3 changed files with 1 additions and 244 deletions

View File

@ -54,14 +54,8 @@ public:
T sum(const Index pos = 0, const Index n = -1) const;
T meanOld(const Index pos = 0, const Index n = -1) const;
T mean(const Index pos = 0, const Index n = -1) const;
T covarianceOld(const StatArray<T, os> &array) const;
T covariance(const StatArray<T, os> &array) const;
T covarianceMatrixOld(const StatArray<T, os> &array, const Index pos = 0,
const Index n = -1) const;
T varianceOld(void) const;
T variance(void) const;
T varianceMatrixOld(const Index pos = 0, const Index n = -1) const;
T correlationMatrixOld(const Index pos = 0, const Index n = -1) const;
// IO type
virtual IoType getType(void) const;
public:
@ -151,19 +145,6 @@ void StatArray<T, os>::bin(Index binSize)
}
}
template <typename T, Index os>
T StatArray<T, os>::meanOld(const Index pos, const Index n) const
{
T result = T();
const Index m = (n >= 0) ? n : size();
if (m)
{
result = this->segment(pos+os, m).redux(&StatOp::sum<T>);
}
return result/static_cast<double>(m);
}
template <typename T, Index os>
T StatArray<T, os>::sum(const Index pos, const Index n) const
{
@ -187,27 +168,6 @@ T StatArray<T, os>::mean(const Index pos, const Index n) const
return sum(pos, n)/static_cast<double>(m);
}
template <typename T, Index os>
T StatArray<T, os>::covarianceOld(const StatArray<T, os> &array) const
{
T s1, s2, prs, res = T();
const Index m = size();
if (m)
{
auto arraySeg = array.segment(os, m);
auto thisSeg = this->segment(os, m);
s1 = thisSeg.redux(&StatOp::sum<T>);
s2 = arraySeg.redux(&StatOp::sum<T>);
prs = thisSeg.binaryExpr(arraySeg, &StatOp::prod<T>)
.redux(&StatOp::sum<T>);
res = prs - StatOp::prod(s1, s2)/static_cast<double>(m);
}
return res/static_cast<double>(m - 1);
}
template <typename T, Index os>
T StatArray<T, os>::covariance(const StatArray<T, os> &array) const
{
@ -226,105 +186,26 @@ T StatArray<T, os>::covariance(const StatArray<T, os> &array) const
return res;
}
template <typename T, Index os>
T StatArray<T, os>::covarianceMatrixOld(const StatArray<T, os> &array,
const Index pos, const Index n) const
{
T s1, s2, prs, res = T();
const Index m = (n >= 0) ? n : size();
if (m)
{
auto arraySeg = array.segment(pos+os, m);
auto thisSeg = this->segment(pos+os, m);
s1 = thisSeg.redux(&StatOp::sum<T>);
s2 = arraySeg.redux(&StatOp::sum<T>);
prs = thisSeg.binaryExpr(arraySeg, &StatOp::tensProd<T>)
.redux(&StatOp::sum<T>);
res = prs - StatOp::tensProd(s1, s2)/static_cast<double>(m);
}
return res/static_cast<double>(m - 1);
}
template <typename T, Index os>
T StatArray<T, os>::variance(void) const
{
return covariance(*this);
}
template <typename T, Index os>
T StatArray<T, os>::varianceOld(void) const
{
return covarianceOld(*this);
}
template <typename T, Index os>
T StatArray<T, os>::varianceMatrixOld(const Index pos, const Index n) const
{
return covarianceMatrixOld(*this, pos, n);
}
template <typename T, Index os>
T StatArray<T, os>::correlationMatrixOld(const Index pos, const Index n) const
{
T res = varianceMatrixOld(pos, n);
T invDiag(res.rows(), 1);
invDiag = res.diagonal();
invDiag = invDiag.cwiseInverse().cwiseSqrt();
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
return res;
}
// reduction operations ////////////////////////////////////////////////////////
namespace StatOp
{
template <typename T>
inline void zero(T &a)
{
a = 0.;
}
template <typename T>
inline T sum(const T &a, const T &b)
{
return a + b;
}
template <typename T>
inline T prod(const T &a, const T &b)
{
return a*b;
}
template <typename T>
inline T tensProd(const T &v1 __dumb, const T &v2 __dumb)
{
LATAN_ERROR(Implementation,
"tensorial product not implemented for this type");
}
template <>
inline Mat<double> prod(const Mat<double> &a, const Mat<double> &b)
{
return a.cwiseProduct(b);
}
template <>
inline Mat<double> tensProd(const Mat<double> &v1,
const Mat<double> &v2)
{
if ((v1.cols() != 1) or (v2.cols() != 1))
{
LATAN_ERROR(Size,
"tensorial product is only valid with column vectors");
}
return v1*v2.transpose();
}
}
// IO type /////////////////////////////////////////////////////////////////////