1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 08:55:37 +00:00

significant optimisation of covariance routines + checks

This commit is contained in:
Antonin Portelli 2021-12-20 01:25:13 +01:00
parent c796187d1e
commit 57c6004797
4 changed files with 288 additions and 33 deletions

View File

@ -20,7 +20,8 @@ noinst_PROGRAMS = \
exPValue \ exPValue \
exRand \ exRand \
exRootFinder \ exRootFinder \
exThreadPool exThreadPool \
exVarBenchmark
exCompiledDoubleFunction_SOURCES = exCompiledDoubleFunction.cpp exCompiledDoubleFunction_SOURCES = exCompiledDoubleFunction.cpp
exCompiledDoubleFunction_CXXFLAGS = $(COM_CXXFLAGS) exCompiledDoubleFunction_CXXFLAGS = $(COM_CXXFLAGS)
@ -78,4 +79,8 @@ exThreadPool_SOURCES = exThreadPool.cpp
exThreadPool_CXXFLAGS = $(COM_CXXFLAGS) exThreadPool_CXXFLAGS = $(COM_CXXFLAGS)
exThreadPool_LDFLAGS = -L../lib/.libs -lLatAnalyze exThreadPool_LDFLAGS = -L../lib/.libs -lLatAnalyze
exVarBenchmark_SOURCES = exVarBenchmark.cpp
exVarBenchmark_CXXFLAGS = $(COM_CXXFLAGS)
exVarBenchmark_LDFLAGS = -L../lib/.libs -lLatAnalyze
ACLOCAL_AMFLAGS = -I .buildutils/m4 ACLOCAL_AMFLAGS = -I .buildutils/m4

119
examples/exVarBenchmark.cpp Normal file
View File

@ -0,0 +1,119 @@
#include <LatAnalyze/Io/Io.hpp>
#include <LatAnalyze/Functional/CompiledFunction.hpp>
#include <LatAnalyze/Core/Plot.hpp>
#include <LatAnalyze/Statistics/Random.hpp>
#include <LatAnalyze/Statistics/MatSample.hpp>
using namespace std;
using namespace Latan;
constexpr Index size = 1000;
constexpr Index nSample = 2000;
int main(void)
{
random_device rd;
DMat var(size, size);
DVec mean(size);
DMatSample sample(nSample, size, 1), sample2(nSample, size, 1);
cout << "-- generating " << nSample << " Gaussian random vectors..." << endl;
var = DMat::Random(size, size);
var *= var.adjoint();
mean = DVec::Random(size);
RandomNormal mgauss(mean, var, rd());
sample[central] = mgauss();
FOR_STAT_ARRAY(sample, s)
{
sample[s] = mgauss();
}
sample2[central] = mgauss();
FOR_STAT_ARRAY(sample, s)
{
sample2[s] = mgauss();
}
cout << "-- check new routines" << endl;
DMat v, vo;
cout << "var" << endl;
auto start = chrono::high_resolution_clock::now();
vo = sample.varianceOld();
auto end = chrono::high_resolution_clock::now();
chrono::duration<double> diff = end - start;
cout << "time " << diff.count() << endl;
start = chrono::high_resolution_clock::now();
v = sample.variance();
end = chrono::high_resolution_clock::now();
diff = end - start;
cout << "time " << diff.count() << endl;
cout << "diff " << (v - vo).norm() << endl;
cout << "cov" << endl;
start = chrono::high_resolution_clock::now();
vo = sample.covarianceOld(sample2);
end = chrono::high_resolution_clock::now();
diff = end - start;
cout << "time " << diff.count() << endl;
start = chrono::high_resolution_clock::now();
v = sample.covariance(sample2);
end = chrono::high_resolution_clock::now();
diff = end - start;
cout << "time " << diff.count() << endl;
cout << "diff " << (v - vo).norm() << endl;
cout << "mean" << endl;
start = chrono::high_resolution_clock::now();
vo = sample.meanOld(3, 5);
end = chrono::high_resolution_clock::now();
diff = end - start;
cout << "time " << diff.count() << endl;
start = chrono::high_resolution_clock::now();
v = sample.mean(3, 5);
end = chrono::high_resolution_clock::now();
diff = end - start;
cout << "time " << diff.count() << endl;
cout << "diff " << (v - vo).norm() << endl;
cout << "varmat" << endl;
start = chrono::high_resolution_clock::now();
vo = sample.varianceMatrixOld();
end = chrono::high_resolution_clock::now();
diff = end - start;
cout << "time " << diff.count() << endl;
start = chrono::high_resolution_clock::now();
v = sample.varianceMatrix();
end = chrono::high_resolution_clock::now();
diff = end - start;
cout << "time " << diff.count() << endl;
cout << "diff " << (v - vo).norm() << endl;
cout << "covarmat" << endl;
start = chrono::high_resolution_clock::now();
vo = sample.covarianceMatrixOld(sample2);
end = chrono::high_resolution_clock::now();
diff = end - start;
cout << "time " << diff.count() << endl;
start = chrono::high_resolution_clock::now();
v = sample.covarianceMatrix(sample2);
end = chrono::high_resolution_clock::now();
diff = end - start;
cout << "time " << diff.count() << endl;
cout << "diff " << (v - vo).norm() << endl;
cout << "corrmat" << endl;
start = chrono::high_resolution_clock::now();
vo = sample.correlationMatrixOld();
end = chrono::high_resolution_clock::now();
diff = end - start;
cout << "time " << diff.count() << endl;
start = chrono::high_resolution_clock::now();
v = sample.correlationMatrix();
end = chrono::high_resolution_clock::now();
diff = end - start;
cout << "time " << diff.count() << endl;
cout << "diff " << (v - vo).norm() << endl;
return EXIT_SUCCESS;
}

View File

@ -103,6 +103,10 @@ public:
const Index nCol); const Index nCol);
// resize all matrices // resize all matrices
void resizeMat(const Index nRow, const Index nCol); void resizeMat(const Index nRow, const Index nCol);
// covariance matrix
Mat<T> covarianceMatrix(const MatSample<T> &sample) const;
Mat<T> varianceMatrix(void) const;
Mat<T> correlationMatrix(void) const;
}; };
// non-member operators // non-member operators
@ -379,6 +383,78 @@ void MatSample<T>::resizeMat(const Index nRow, const Index nCol)
} }
} }
// covariance matrix ///////////////////////////////////////////////////////////
template <typename T>
Mat<T> MatSample<T>::covarianceMatrix(const MatSample<T> &sample) const
{
if (((*this)[central].cols() != 1) or (sample[central].cols() != 1))
{
LATAN_ERROR(Size, "samples have more than one column");
}
Index n1 = (*this)[central].rows(), n2 = sample[central].rows();
Index nSample = this->size();
Mat<T> tmp1(n1, nSample), tmp2(n2, nSample), res(n1, n2);
Mat<T> s1(n1, 1), s2(n2, 1), one(nSample, 1);
one.fill(1.);
s1.fill(0.);
s2.fill(0.);
for (unsigned int s = 0; s < nSample; ++s)
{
s1 += (*this)[s];
tmp1.col(s) = (*this)[s];
}
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
for (unsigned int s = 0; s < nSample; ++s)
{
s2 += sample[s];
tmp2.col(s) = sample[s];
}
tmp2 -= s2*one.transpose()/static_cast<double>(nSample);
res = tmp1*tmp2.transpose()/static_cast<double>(nSample - 1);
return res;
}
template <typename T>
Mat<T> MatSample<T>::varianceMatrix(void) const
{
if ((*this)[central].cols() != 1)
{
LATAN_ERROR(Size, "samples have more than one column");
}
Index n1 = (*this)[central].rows();
Index nSample = this->size();
Mat<T> tmp1(n1, nSample), res(n1, n1);
Mat<T> s1(n1, 1), one(nSample, 1);
one.fill(1.);
s1.fill(0.);
for (unsigned int s = 0; s < nSample; ++s)
{
s1 += (*this)[s];
tmp1.col(s) = (*this)[s];
}
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
res = tmp1*tmp1.transpose()/static_cast<double>(nSample - 1);
return res;
}
template <typename T>
Mat<T> MatSample<T>::correlationMatrix(void) const
{
Mat<T> res = varianceMatrix();
Mat<T> invDiag(res.rows(), 1);
invDiag = res.diagonal();
invDiag = invDiag.cwiseInverse().cwiseSqrt();
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
return res;
}
END_LATAN_NAMESPACE END_LATAN_NAMESPACE

View File

@ -51,14 +51,17 @@ public:
const T & operator[](const Index s) const; const T & operator[](const Index s) const;
// statistics // statistics
void bin(Index binSize); void bin(Index binSize);
T sum(const Index pos = 0, const Index n = -1) const;
T meanOld(const Index pos = 0, const Index n = -1) const;
T mean(const Index pos = 0, const Index n = -1) const; T mean(const Index pos = 0, const Index n = -1) const;
T covariance(const StatArray<T, os> &array, const Index pos = 0, T covarianceOld(const StatArray<T, os> &array) const;
const Index n = -1) const; T covariance(const StatArray<T, os> &array) const;
T covarianceMatrix(const StatArray<T, os> &array, const Index pos = 0, T covarianceMatrixOld(const StatArray<T, os> &array, const Index pos = 0,
const Index n = -1) const; const Index n = -1) const;
T variance(const Index pos = 0, const Index n = -1) const; T varianceOld(void) const;
T varianceMatrix(const Index pos = 0, const Index n = -1) const; T variance(void) const;
T correlationMatrix(const Index pos = 0, const Index n = -1) const; T varianceMatrixOld(const Index pos = 0, const Index n = -1) const;
T correlationMatrixOld(const Index pos = 0, const Index n = -1) const;
// IO type // IO type
virtual IoType getType(void) const; virtual IoType getType(void) const;
public: public:
@ -66,7 +69,7 @@ public:
}; };
// reduction operations // reduction operations
namespace ReducOp namespace StatOp
{ {
// general templates // general templates
template <typename T> template <typename T>
@ -149,42 +152,82 @@ void StatArray<T, os>::bin(Index binSize)
} }
template <typename T, Index os> template <typename T, Index os>
T StatArray<T, os>::mean(const Index pos, const Index n) const T StatArray<T, os>::meanOld(const Index pos, const Index n) const
{ {
T result = T(); T result = T();
const Index m = (n >= 0) ? n : size(); const Index m = (n >= 0) ? n : size();
if (m) if (m)
{ {
result = this->segment(pos+os, m).redux(&ReducOp::sum<T>); result = this->segment(pos+os, m).redux(&StatOp::sum<T>);
} }
return result/static_cast<double>(m); return result/static_cast<double>(m);
} }
template <typename T, Index os> template <typename T, Index os>
T StatArray<T, os>::covariance(const StatArray<T, os> &array, const Index pos, T StatArray<T, os>::sum(const Index pos, const Index n) const
const Index n) const {
T result;
const Index m = (n >= 0) ? n : size();
result = (*this)[pos];
for (Index i = pos + 1; i < pos + m; ++i)
{
result += (*this)[i];
}
return result;
}
template <typename T, Index os>
T StatArray<T, os>::mean(const Index pos, const Index n) const
{
const Index m = (n >= 0) ? n : size();
return sum(pos, n)/static_cast<double>(m);
}
template <typename T, Index os>
T StatArray<T, os>::covarianceOld(const StatArray<T, os> &array) const
{ {
T s1, s2, prs, res = T(); T s1, s2, prs, res = T();
const Index m = (n >= 0) ? n : size(); const Index m = size();
if (m) if (m)
{ {
auto arraySeg = array.segment(pos+os, m); auto arraySeg = array.segment(os, m);
auto thisSeg = this->segment(pos+os, m); auto thisSeg = this->segment(os, m);
s1 = thisSeg.redux(&ReducOp::sum<T>); s1 = thisSeg.redux(&StatOp::sum<T>);
s2 = arraySeg.redux(&ReducOp::sum<T>); s2 = arraySeg.redux(&StatOp::sum<T>);
prs = thisSeg.binaryExpr(arraySeg, &ReducOp::prod<T>) prs = thisSeg.binaryExpr(arraySeg, &StatOp::prod<T>)
.redux(&ReducOp::sum<T>); .redux(&StatOp::sum<T>);
res = prs - ReducOp::prod(s1, s2)/static_cast<double>(m); res = prs - StatOp::prod(s1, s2)/static_cast<double>(m);
} }
return res/static_cast<double>(m - 1); return res/static_cast<double>(m - 1);
} }
template <typename T, Index os> template <typename T, Index os>
T StatArray<T, os>::covarianceMatrix(const StatArray<T, os> &array, T StatArray<T, os>::covariance(const StatArray<T, os> &array) const
{
T s1, s2, res;
s1 = array.sum();
s2 = this->sum();
res = StatOp::prod<T>(array[0], (*this)[0]);
for (Index i = 1; i < size(); ++i)
{
res += StatOp::prod<T>(array[i], (*this)[i]);
}
res -= StatOp::prod<T>(s1, s2)/static_cast<double>(size());
res /= static_cast<double>(size() - 1);
return res;
}
template <typename T, Index os>
T StatArray<T, os>::covarianceMatrixOld(const StatArray<T, os> &array,
const Index pos, const Index n) const const Index pos, const Index n) const
{ {
T s1, s2, prs, res = T(); T s1, s2, prs, res = T();
@ -195,32 +238,38 @@ T StatArray<T, os>::covarianceMatrix(const StatArray<T, os> &array,
auto arraySeg = array.segment(pos+os, m); auto arraySeg = array.segment(pos+os, m);
auto thisSeg = this->segment(pos+os, m); auto thisSeg = this->segment(pos+os, m);
s1 = thisSeg.redux(&ReducOp::sum<T>); s1 = thisSeg.redux(&StatOp::sum<T>);
s2 = arraySeg.redux(&ReducOp::sum<T>); s2 = arraySeg.redux(&StatOp::sum<T>);
prs = thisSeg.binaryExpr(arraySeg, &ReducOp::tensProd<T>) prs = thisSeg.binaryExpr(arraySeg, &StatOp::tensProd<T>)
.redux(&ReducOp::sum<T>); .redux(&StatOp::sum<T>);
res = prs - ReducOp::tensProd(s1, s2)/static_cast<double>(m); res = prs - StatOp::tensProd(s1, s2)/static_cast<double>(m);
} }
return res/static_cast<double>(m - 1); return res/static_cast<double>(m - 1);
} }
template <typename T, Index os> template <typename T, Index os>
T StatArray<T, os>::variance(const Index pos, const Index n) const T StatArray<T, os>::variance(void) const
{ {
return covariance(*this, pos, n); return covariance(*this);
} }
template <typename T, Index os> template <typename T, Index os>
T StatArray<T, os>::varianceMatrix(const Index pos, const Index n) const T StatArray<T, os>::varianceOld(void) const
{ {
return covarianceMatrix(*this, pos, n); return covarianceOld(*this);
} }
template <typename T, Index os> template <typename T, Index os>
T StatArray<T, os>::correlationMatrix(const Index pos, const Index n) const T StatArray<T, os>::varianceMatrixOld(const Index pos, const Index n) const
{ {
T res = varianceMatrix(pos, n); return covarianceMatrixOld(*this, pos, n);
}
template <typename T, Index os>
T StatArray<T, os>::correlationMatrixOld(const Index pos, const Index n) const
{
T res = varianceMatrixOld(pos, n);
T invDiag(res.rows(), 1); T invDiag(res.rows(), 1);
invDiag = res.diagonal(); invDiag = res.diagonal();
@ -231,8 +280,14 @@ T StatArray<T, os>::correlationMatrix(const Index pos, const Index n) const
} }
// reduction operations //////////////////////////////////////////////////////// // reduction operations ////////////////////////////////////////////////////////
namespace ReducOp namespace StatOp
{ {
template <typename T>
inline void zero(T &a)
{
a = 0.;
}
template <typename T> template <typename T>
inline T sum(const T &a, const T &b) inline T sum(const T &a, const T &b)
{ {