diff --git a/physics/eff-mass.cpp b/physics/eff-mass.cpp index 5372ecb..2570a98 100644 --- a/physics/eff-mass.cpp +++ b/physics/eff-mass.cpp @@ -30,7 +30,7 @@ int main(int argc, char *argv[]) parsed = opt.parse(argc, argv); if (!parsed or (opt.getArgs().size() < 2) or opt.gotOption("help")) { - cerr << "usage: " << argv[0] << " " << endl; + cerr << "usage: " << argv[0] << " < QED correlator file> < QCD correlator file 2>" << endl; cerr << endl << "Possible options:" << endl << opt << endl; return EXIT_FAILURE; @@ -42,7 +42,7 @@ int main(int argc, char *argv[]) doPlot = opt.gotOption("p"); // load correlator ///////////////////////////////////////////////////////// - DMatSample tmp, corr0, dcorr, effmass; + DMatSample tmp, c0, dc, effmass; Index nSample, nt; float tp,tm; @@ -50,23 +50,23 @@ int main(int argc, char *argv[]) nSample = tmp.size(); nt = tmp[central].rows(); tmp = tmp.block(0, 0, nt, 1); - corr0 = tmp; - dcorr = tmp; + c0 = tmp; + dc = tmp; effmass = tmp; // initialise effmass like this - FOR_STAT_ARRAY(corr0, s) // loads the QCD correlator, bootstrap sample by sample + FOR_STAT_ARRAY(c0, s) // loads the QCD correlator, bootstrap sample by sample { for (Index t = 0; t < nt; ++t) { - corr0[s]((t - shift + nt)%nt) = tmp[s](t); + c0[s]((t - shift + nt)%nt) = tmp[s](t); } } tmp = Io::load(corrFileName); tmp = tmp.block(0, 0, nt, 1); - FOR_STAT_ARRAY(dcorr, s) // computes the leading order perturbation in corr + FOR_STAT_ARRAY(dc, s) // computes the leading order perturbation in corr { for (Index t = 0; t < nt; ++t) { - dcorr[s](t) = tmp[s](t) - corr0[s](t); + dc[s](t) = tmp[s](t); } } FOR_STAT_ARRAY(effmass, s) //generate effective mass here @@ -80,7 +80,7 @@ int main(int argc, char *argv[]) tm = nt-1; } - effmass[s](t) = (1./sqrt( ( corr0[s](tp) + corr0[s](tm) )/2*corr0[s](t) - 1 ))*( (dcorr[s](tp) + dcorr[s](tm) )/2*corr0[s](t) - ( dcorr[s](t)/corr0[s](t) )*( ( corr0[s](tp) + corr0[s](tm) )/corr0[s](t) ) ); + effmass[s](t) = ( 1./sqrt( ( c0[s](tp) + c0[s](tm) )/2*c0[s](t) + 1 ) )*( (dc[s](tp) + dc[s](tm) )/2*c0[s](t) - ( dc[s](t)/c0[s](t) )*( ( c0[s](tp) + c0[s](tm) )/2*c0[s](t) ) ); } } // cout << "\n***********\n***********\n***********\nCheckpoint.\n***********\n***********\n***********\n" << endl; @@ -94,99 +94,21 @@ int main(int argc, char *argv[]) Plot p; DVec tAxis; - int ymax = effmass[central](nt/2); tAxis.setLinSpaced(nt,1,nt); - p << PlotRange(Axis::x, 0, nt - 1); - p << PlotRange(Axis::y, 0, ymax); + p << PlotRange(Axis::x, 1, nt); p << Color("rgb 'red'") << PlotData(tAxis, effmass); p.display(); } - /*if (doPlot) - { - Plot p; - DMatSample effMass(nSample); - DVec effMassT, fitErr; - Index maxT = (coshModel) ? (nt - 2) : (nt - 1); - double e0, e0Err; - - p << PlotRange(Axis::x, 0, nt - 1); - if (!linearModel) - { - p << LogScale(Axis::y); - } - p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1); - p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1); - p << Color("rgb 'red'") << PlotData(data.getData()); - p.display(); - effMass.resizeMat(maxT, 1); - effMassT.setLinSpaced(maxT, 1, maxT); - fitErr = fit.variance().cwiseSqrt(); - e0 = fit[central](0); - e0Err = fitErr(0); - if (coshModel) - { - FOR_STAT_ARRAY(effMass, s) - { - for (Index t = 1; t < nt - 1; ++t) - { - effMass[s](t - 1) = acosh((corr[s](t-1) + corr[s](t+1)) - /(2.*corr[s](t))); - } - } - } - else if (linearModel) - { - FOR_STAT_ARRAY(effMass, s) - { - for (Index t = 0; t < nt - 1; ++t) - { - effMass[s](t) = corr[s](t) - corr[s](t+1); - } - } - } - else - { - FOR_STAT_ARRAY(effMass, s) - { - for (Index t = 1; t < nt; ++t) - { - effMass[s](t - 1) = log(corr[s](t-1)/corr[s](t)); - } - } - } - p.reset(); - p << PlotRange(Axis::x, 1, maxT); - p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err); - p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err); - p << Color("rgb 'blue'") << PlotHLine(e0); - p << Color("rgb 'red'") << PlotData(effMassT, effMass); - p.display(); - } - if (doHeatmap) - { - Plot p; - Index n = data.getFitVarMat().rows(); - DMat id = DMat::Identity(n, n); - - p << PlotMatrix(Math::varToCorr(data.getFitVarMat())); - p << Caption("correlation matrix"); - p.display(); - if (svdTol > 0.) - { - p.reset(); - p << PlotMatrix(id - data.getFitVarMat()*data.getFitVarMatPInv()); - p << Caption("singular space projector"); - p.display(); - } - } + // output ////////////////////////////////////////////////////////////////// if (!outFileName.empty()) { - Io::save(fit, outFileName); + Io::save(effmass, outFileName); + cout << "File saved as: " << outFileName << endl; } - return EXIT_SUCCESS;*/ + return EXIT_SUCCESS; }