mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2025-06-22 16:52:02 +01:00
tuning fixes and update comparing with Andrew
This commit is contained in:
@ -14,8 +14,9 @@ bin_PROGRAMS = \
|
|||||||
latan-sample-fake \
|
latan-sample-fake \
|
||||||
latan-sample-ft \
|
latan-sample-ft \
|
||||||
latan-sample-merge \
|
latan-sample-merge \
|
||||||
|
latan-sample-noise-analysis\
|
||||||
latan-sample-plot \
|
latan-sample-plot \
|
||||||
latan-sample-plot-corr\
|
latan-sample-plot-corr \
|
||||||
latan-sample-read \
|
latan-sample-read \
|
||||||
latan-resample
|
latan-resample
|
||||||
|
|
||||||
@ -47,6 +48,10 @@ latan_sample_merge_SOURCES = sample-merge.cpp
|
|||||||
latan_sample_merge_CXXFLAGS = $(COM_CXXFLAGS)
|
latan_sample_merge_CXXFLAGS = $(COM_CXXFLAGS)
|
||||||
latan_sample_merge_LDFLAGS = -L../lib/.libs -lLatAnalyze
|
latan_sample_merge_LDFLAGS = -L../lib/.libs -lLatAnalyze
|
||||||
|
|
||||||
|
latan_sample_noise_analysis_SOURCES = sample-noise-analysis.cpp
|
||||||
|
latan_sample_noise_analysis_CXXFLAGS = $(COM_CXXFLAGS)
|
||||||
|
latan_sample_noise_analysis_LDFLAGS = -L../lib/.libs -lLatAnalyze
|
||||||
|
|
||||||
latan_sample_plot_corr_SOURCES = sample-plot-corr.cpp
|
latan_sample_plot_corr_SOURCES = sample-plot-corr.cpp
|
||||||
latan_sample_plot_corr_CXXFLAGS = $(COM_CXXFLAGS)
|
latan_sample_plot_corr_CXXFLAGS = $(COM_CXXFLAGS)
|
||||||
latan_sample_plot_corr_LDFLAGS = -L../lib/.libs -lLatAnalyze
|
latan_sample_plot_corr_LDFLAGS = -L../lib/.libs -lLatAnalyze
|
||||||
|
193
utils/sample-noise-analysis.cpp
Normal file
193
utils/sample-noise-analysis.cpp
Normal file
@ -0,0 +1,193 @@
|
|||||||
|
/*
|
||||||
|
* sample-noise-analysis.cpp, part of LatAnalyze 3
|
||||||
|
*
|
||||||
|
* Copyright (C) 2013 - 2020 Antonin Portelli
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <LatAnalyze/Core/OptParser.hpp>
|
||||||
|
#include <LatAnalyze/Io/Io.hpp>
|
||||||
|
#include <LatAnalyze/Core/Math.hpp>
|
||||||
|
#include <LatAnalyze/Core/Plot.hpp>
|
||||||
|
#include <LatAnalyze/Numerical/GslFFT.hpp>
|
||||||
|
#include <LatAnalyze/Numerical/MinuitMinimizer.hpp>
|
||||||
|
#include <LatAnalyze/Statistics/XYSampleData.hpp>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
using namespace Latan;
|
||||||
|
using namespace Math;
|
||||||
|
|
||||||
|
int main(int argc, char *argv[])
|
||||||
|
{
|
||||||
|
// argument parsing ////////////////////////////////////////////////////////
|
||||||
|
OptParser opt;
|
||||||
|
bool parsed;
|
||||||
|
string filename;
|
||||||
|
|
||||||
|
opt.addOption("" , "help" , OptParser::OptType::trigger, true,
|
||||||
|
"show this help message and exit");
|
||||||
|
parsed = opt.parse(argc, argv);
|
||||||
|
if (!parsed or (opt.getArgs().size() != 1) or opt.gotOption("help"))
|
||||||
|
{
|
||||||
|
cerr << "usage: " << argv[0];
|
||||||
|
cerr << "<options> <sample file>" << endl;
|
||||||
|
cerr << endl << "Possible options:" << endl << opt << endl;
|
||||||
|
|
||||||
|
return EXIT_FAILURE;
|
||||||
|
}
|
||||||
|
filename = opt.getArgs()[0];
|
||||||
|
|
||||||
|
// load data ///////////////////////////////////////////////////////////////
|
||||||
|
DMatSample sample;
|
||||||
|
|
||||||
|
cout << "-- load data" << endl;
|
||||||
|
sample = Io::load<DMatSample>(filename);
|
||||||
|
|
||||||
|
// compute power spectrum //////////////////////////////////////////////////
|
||||||
|
DMat av, err;
|
||||||
|
double l0;
|
||||||
|
Index nSample = sample.size(), n = sample[central].rows();
|
||||||
|
DMatSample noise(nSample), pow(nSample, n, 1);
|
||||||
|
CMatSample ftBuf(nSample, n, 1);
|
||||||
|
GslFFT fft(n);
|
||||||
|
|
||||||
|
cout << "-- compute power spectrum" << endl;
|
||||||
|
FOR_STAT_ARRAY(sample, s)
|
||||||
|
{
|
||||||
|
sample[s].conservativeResize(n, 1);
|
||||||
|
}
|
||||||
|
av = sample.mean();
|
||||||
|
err = sample.variance().cwiseSqrt();
|
||||||
|
FOR_STAT_ARRAY(sample, s)
|
||||||
|
{
|
||||||
|
noise[s] = sample[s] - av;
|
||||||
|
ftBuf[s].real() = noise[s];
|
||||||
|
ftBuf[s].imag().fill(0.);
|
||||||
|
fft(ftBuf[s]);
|
||||||
|
pow[s] = ftBuf[s].cwiseAbs2().unaryExpr([](const double x){return 10.*log10(x);});
|
||||||
|
//pow[s] = ftBuf[s].cwiseAbs2();
|
||||||
|
pow[s].conservativeResize(n/2, 1);
|
||||||
|
}
|
||||||
|
pow[central] = pow.mean();
|
||||||
|
// {
|
||||||
|
// Plot p;
|
||||||
|
// DVec x;
|
||||||
|
|
||||||
|
// x.setLinSpaced(n/2, 0., n/2 - 1.);
|
||||||
|
// p << LogScale(Axis::x);
|
||||||
|
// p << PlotData(x, pow);
|
||||||
|
// p.display();
|
||||||
|
// }
|
||||||
|
// l0 = pow.mean()(1);
|
||||||
|
// FOR_STAT_ARRAY(sample, s)
|
||||||
|
// {
|
||||||
|
// pow[s] = pow[s].unaryExpr([l0](const double x){return x - l0;});
|
||||||
|
// }
|
||||||
|
|
||||||
|
// fit decay ///////////////////////////////////////////////////////////////
|
||||||
|
DVec x, init(2);
|
||||||
|
DMat fitErr;
|
||||||
|
DMatSample xs(nSample, n/2, 1);
|
||||||
|
DSample beta(nSample);
|
||||||
|
XYSampleData data(nSample);
|
||||||
|
MinuitMinimizer min;
|
||||||
|
DoubleModel lin([](const double *x, const double *p){return x[0]*p[0] + p[1];}, 1, 2);
|
||||||
|
|
||||||
|
cout << "-- fit decay" << endl;
|
||||||
|
x.setLinSpaced(n/2, 0., n/2 - 1.);
|
||||||
|
FOR_VEC(x, i)
|
||||||
|
{
|
||||||
|
x(i) = log2(x(i));
|
||||||
|
}
|
||||||
|
xs.fill(x);
|
||||||
|
data.addXDim(n/2, "f", true);
|
||||||
|
data.addYDim("pow");
|
||||||
|
data.setUnidimData(xs, pow);
|
||||||
|
data.assumeYYCorrelated(true, 0, 0);
|
||||||
|
for (unsigned int i = 0; i < n/2; ++i)
|
||||||
|
{
|
||||||
|
data.fitPoint((x(i) >= 2.) and (x(i) <= log2(n/2) - 0.5), i);
|
||||||
|
}
|
||||||
|
init(0) = -0.1; init(1) = -0.1;
|
||||||
|
auto fit = data.fit(min, init, lin);
|
||||||
|
fitErr = fit.variance().cwiseSqrt();
|
||||||
|
FOR_STAT_ARRAY(beta, s)
|
||||||
|
{
|
||||||
|
beta[s] = fit[s](0)/(10.*log10(2.));
|
||||||
|
}
|
||||||
|
printf("chi^2/dof = %.1e/%d= %.2e -- chi^2 CCDF = %.2e -- p-value = %.2e -- CDR = %.1f dB\n",
|
||||||
|
fit.getChi2(), static_cast<int>(fit.getNDof()), fit.getChi2PerDof(),
|
||||||
|
fit.getCcdf(), fit.getPValue(), fit.getCorrRangeDb());
|
||||||
|
printf(" decay = %.2f +/- %.2f dB/oct\n", fit[central](0), fitErr(0));
|
||||||
|
printf(" exponent = %.2f +/- %.2f\n", beta[central], sqrt(beta.variance()));
|
||||||
|
|
||||||
|
Plot p;
|
||||||
|
|
||||||
|
p << Caption("noise power spectrum");
|
||||||
|
p << PlotRange(Axis::x, -0.5, log2(n/2) + 0.5)
|
||||||
|
<< Label("frequency (oct)", Axis::x) << Label("power (dB)", Axis::y);
|
||||||
|
p << Color("1") << PlotPredBand(fit.getModel(_), 0., log2(n/2) + 0.5);
|
||||||
|
p << Color("1") << PlotFunction(fit.getModel(), 0., log2(n/2) + 0.5);
|
||||||
|
p << Color("2") << PlotData(x, pow);
|
||||||
|
|
||||||
|
p.display();
|
||||||
|
|
||||||
|
// p.reset();
|
||||||
|
// p << PlotCorrMatrix(data.getFitCorrMat());
|
||||||
|
// p.display();
|
||||||
|
|
||||||
|
// filter correlator ///////////////////////////////////////////////////////
|
||||||
|
DVec filter(n);
|
||||||
|
DMatSample fsample(nSample, n, 1);
|
||||||
|
|
||||||
|
FOR_VEC(filter, i)
|
||||||
|
{
|
||||||
|
filter(i) = -std::pow(2.*sin(pi/n*i), 2);//-beta[central]*.5);
|
||||||
|
}
|
||||||
|
FOR_STAT_ARRAY(sample, s)
|
||||||
|
{
|
||||||
|
ftBuf[s].real() = sample[s].col(0);
|
||||||
|
ftBuf[s].imag().fill(0.);
|
||||||
|
fft(ftBuf[s], FFT::Forward);
|
||||||
|
ftBuf[s] = ftBuf[s].cwiseProduct(filter);
|
||||||
|
fft(ftBuf[s], FFT::Backward);
|
||||||
|
fsample[s] = ftBuf[s].real();
|
||||||
|
}
|
||||||
|
|
||||||
|
// p.reset();
|
||||||
|
x.setLinSpaced(n, 0., n - 1.);
|
||||||
|
// p << PlotData(x, sample);
|
||||||
|
// p << PlotData(x, fsample);
|
||||||
|
// p.display();
|
||||||
|
|
||||||
|
p.reset();
|
||||||
|
FOR_VEC(x, i)
|
||||||
|
{
|
||||||
|
x(i) = log2(x(i));
|
||||||
|
}
|
||||||
|
p << PlotRange(Axis::x, -0.5, log2(n/2) + 0.5);
|
||||||
|
p << PlotPoints(x, -filter);
|
||||||
|
p.display();
|
||||||
|
p.reset();
|
||||||
|
p << PlotCorrMatrix(sample.correlationMatrix());
|
||||||
|
p.display();
|
||||||
|
p.reset();
|
||||||
|
p << PlotCorrMatrix(fsample.correlationMatrix());
|
||||||
|
p.display();
|
||||||
|
Io::save(fsample, "test.h5");
|
||||||
|
|
||||||
|
|
||||||
|
return EXIT_SUCCESS;
|
||||||
|
}
|
Reference in New Issue
Block a user