mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-10 00:45:36 +00:00
2-pt fitter moved here from UKAnalyze
This commit is contained in:
parent
85d76052ce
commit
83afc7901b
@ -1,3 +1,3 @@
|
||||
SUBDIRS = lib utils examples
|
||||
SUBDIRS = lib utils physics examples
|
||||
|
||||
ACLOCAL_AMFLAGS = -I .buildutils/m4
|
||||
|
@ -131,7 +131,8 @@ AC_SUBST([LIBS])
|
||||
AC_SUBST([AM_CFLAGS])
|
||||
AC_SUBST([AM_LDFLAGS])
|
||||
|
||||
AC_CONFIG_FILES([Makefile lib/Makefile utils/Makefile examples/Makefile])
|
||||
AC_CONFIG_FILES([Makefile lib/Makefile utils/Makefile physics/Makefile
|
||||
examples/Makefile])
|
||||
AC_OUTPUT
|
||||
|
||||
echo "*********************************************"
|
||||
|
332
physics/2pt-fit.cpp
Normal file
332
physics/2pt-fit.cpp
Normal file
@ -0,0 +1,332 @@
|
||||
#include <LatCore/OptParser.hpp>
|
||||
#include <LatAnalyze/CompiledModel.hpp>
|
||||
#include <LatAnalyze/Io.hpp>
|
||||
#include <LatAnalyze/MatSample.hpp>
|
||||
#include <LatAnalyze/Math.hpp>
|
||||
#include <LatAnalyze/MinuitMinimizer.hpp>
|
||||
#include <LatAnalyze/NloptMinimizer.hpp>
|
||||
#include <LatAnalyze/Plot.hpp>
|
||||
#include <LatAnalyze/XYSampleData.hpp>
|
||||
|
||||
using namespace std;
|
||||
using namespace Latan;
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
// parse arguments /////////////////////////////////////////////////////////
|
||||
OptParser opt;
|
||||
bool parsed, doPlot, doHeatmap, doCorr, fold;
|
||||
string corrFileName, model, outFileName, outFmt;
|
||||
Index ti, tf, shift, nPar, thinning;
|
||||
double svdTol;
|
||||
Minimizer::Verbosity verbosity;
|
||||
|
||||
opt.addOption("" , "ti" , OptParser::OptType::value , false,
|
||||
"initial fit time");
|
||||
opt.addOption("" , "tf" , OptParser::OptType::value , false,
|
||||
"final fit time");
|
||||
opt.addOption("t" , "thinning", OptParser::OptType::value , true,
|
||||
"thinning of the time interval", "1");
|
||||
opt.addOption("s", "shift" , OptParser::OptType::value , true,
|
||||
"time variable shift", "0");
|
||||
opt.addOption("m", "model" , OptParser::OptType::value , true,
|
||||
"fit model (exp|exp2|exp3|cosh|cosh2|cosh3|<interpreter code>)", "cosh");
|
||||
opt.addOption("" , "nPar" , OptParser::OptType::value , true,
|
||||
"number of model parameters for custom models "
|
||||
"(-1 if irrelevant)", "-1");
|
||||
opt.addOption("" , "svd" , OptParser::OptType::value , true,
|
||||
"singular value elimination threshold", "0.");
|
||||
opt.addOption("v", "verbosity", OptParser::OptType::value , true,
|
||||
"minimizer verbosity level (0|1|2)", "0");
|
||||
opt.addOption("o", "output", OptParser::OptType::value , true,
|
||||
"output file", "");
|
||||
opt.addOption("" , "uncorr" , OptParser::OptType::trigger, true,
|
||||
"only do the uncorrelated fit");
|
||||
opt.addOption("" , "fold" , OptParser::OptType::trigger, true,
|
||||
"fold the correlator");
|
||||
opt.addOption("p", "plot" , OptParser::OptType::trigger, true,
|
||||
"show the fit plot");
|
||||
opt.addOption("h", "heatmap" , OptParser::OptType::trigger, true,
|
||||
"show the fit correlation heatmap");
|
||||
opt.addOption("", "help" , OptParser::OptType::trigger, true,
|
||||
"show this help message and exit");
|
||||
parsed = opt.parse(argc, argv);
|
||||
if (!parsed or (opt.getArgs().size() != 1) or opt.gotOption("help"))
|
||||
{
|
||||
cerr << "usage: " << argv[0] << " <options> <correlator file>" << endl;
|
||||
cerr << endl << "Possible options:" << endl << opt << endl;
|
||||
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
corrFileName = opt.getArgs().front();
|
||||
ti = opt.optionValue<Index>("ti");
|
||||
tf = opt.optionValue<Index>("tf");
|
||||
thinning = opt.optionValue<Index>("t");
|
||||
shift = opt.optionValue<Index>("s");
|
||||
model = opt.optionValue("m");
|
||||
nPar = opt.optionValue<Index>("nPar");
|
||||
svdTol = opt.optionValue<double>("svd");
|
||||
outFileName = opt.optionValue<string>("o");
|
||||
doCorr = !opt.gotOption("uncorr");
|
||||
fold = opt.gotOption("fold");
|
||||
doPlot = opt.gotOption("p");
|
||||
doHeatmap = opt.gotOption("h");
|
||||
switch (opt.optionValue<unsigned int>("v"))
|
||||
{
|
||||
case 0:
|
||||
verbosity = Minimizer::Verbosity::Silent;
|
||||
break;
|
||||
case 1:
|
||||
verbosity = Minimizer::Verbosity::Normal;
|
||||
break;
|
||||
case 2:
|
||||
verbosity = Minimizer::Verbosity::Debug;
|
||||
break;
|
||||
default:
|
||||
cerr << "error: wrong verbosity level" << endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
// load correlator /////////////////////////////////////////////////////////
|
||||
DMatSample tmp, corr;
|
||||
Index nSample, nt;
|
||||
|
||||
tmp = Io::load<DMatSample>(corrFileName);
|
||||
nSample = tmp.size();
|
||||
nt = tmp[central].rows();
|
||||
tmp = tmp.block(0, 0, nt, 1);
|
||||
corr = tmp;
|
||||
FOR_STAT_ARRAY(corr, s)
|
||||
{
|
||||
for (Index t = 0; t < nt; ++t)
|
||||
{
|
||||
corr[s]((t - shift + nt)%nt) = tmp[s](t);
|
||||
}
|
||||
}
|
||||
if (fold)
|
||||
{
|
||||
tmp = corr;
|
||||
FOR_STAT_ARRAY(corr, s)
|
||||
{
|
||||
for (Index t = 0; t < nt; ++t)
|
||||
{
|
||||
corr[s](t) = 0.5*(tmp[s](t) + tmp[s]((nt - t) % nt));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// make model //////////////////////////////////////////////////////////////
|
||||
DoubleModel mod;
|
||||
bool coshModel = false;
|
||||
|
||||
if ((model == "exp") or (model == "exp1"))
|
||||
{
|
||||
nPar = 2;
|
||||
mod.setFunction([](const double *x, const double *p)
|
||||
{
|
||||
return p[1]*exp(-p[0]*x[0]);
|
||||
}, 1, nPar);
|
||||
}
|
||||
else if (model == "exp2")
|
||||
{
|
||||
nPar = 4;
|
||||
mod.setFunction([](const double *x, const double *p)
|
||||
{
|
||||
return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0]);
|
||||
}, 1, nPar);
|
||||
}
|
||||
else if (model == "exp3")
|
||||
{
|
||||
nPar = 6;
|
||||
mod.setFunction([](const double *x, const double *p)
|
||||
{
|
||||
return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0])
|
||||
+ p[5]*exp(-p[4]*x[0]);
|
||||
}, 1, nPar);
|
||||
}
|
||||
else if ((model == "cosh") or (model == "cosh1"))
|
||||
{
|
||||
coshModel = true;
|
||||
nPar = 2;
|
||||
mod.setFunction([nt](const double *x, const double *p)
|
||||
{
|
||||
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])));
|
||||
}, 1, nPar);
|
||||
}
|
||||
else if (model == "cosh2")
|
||||
{
|
||||
coshModel = true;
|
||||
nPar = 4;
|
||||
mod.setFunction([nt](const double *x, const double *p)
|
||||
{
|
||||
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
|
||||
+ p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])));
|
||||
}, 1, nPar);
|
||||
}
|
||||
else if (model == "cosh3")
|
||||
{
|
||||
coshModel = true;
|
||||
nPar = 6;
|
||||
mod.setFunction([nt](const double *x, const double *p)
|
||||
{
|
||||
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
|
||||
+ p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])))
|
||||
+ p[5]*(exp(-p[2]*x[0])+exp(-p[4]*(nt-x[0])));
|
||||
}, 1, nPar);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (nPar > 0)
|
||||
{
|
||||
mod = compile(model, 1, nPar);
|
||||
}
|
||||
else
|
||||
{
|
||||
cerr << "error: please specify the number of model parameter"
|
||||
" using the --nPar function" << endl;
|
||||
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
// fit /////////////////////////////////////////////////////////////////////
|
||||
DMatSample tvec(nSample);
|
||||
XYSampleData data(nSample);
|
||||
SampleFitResult fit;
|
||||
DVec init(nPar);
|
||||
NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
|
||||
MinuitMinimizer locMin;
|
||||
vector<Minimizer *> unCorrMin{&globMin, &locMin};
|
||||
|
||||
FOR_STAT_ARRAY(tvec, s)
|
||||
{
|
||||
tvec[s] = DVec::LinSpaced(nt, 0, nt - 1);
|
||||
}
|
||||
data.addXDim(nt, "t/a", true);
|
||||
data.addYDim("C(t)");
|
||||
data.setUnidimData(tvec, corr);
|
||||
for (Index p = 0; p < nPar; p += 2)
|
||||
{
|
||||
mod.parName().setName(p, "E_" + strFrom(p/2));
|
||||
mod.parName().setName(p + 1, "Z_" + strFrom(p/2));
|
||||
}
|
||||
init(0) = log(data.y(nt/4, 0)[central]/data.y(nt/4 + 1, 0)[central]);
|
||||
init(1) = data.y(nt/4, 0)[central]/(exp(-init(0)*nt/4));
|
||||
for (Index p = 2; p < nPar; p += 2)
|
||||
{
|
||||
init(p) = 2*init(p - 2);
|
||||
init(p + 1) = init(p - 1)/2.;
|
||||
}
|
||||
for (Index p = 0; p < nPar; p += 2)
|
||||
{
|
||||
globMin.setLowLimit(p, 0.);
|
||||
globMin.setHighLimit(p, 10.*init(p));
|
||||
globMin.setLowLimit(p + 1, -10.*init(p + 1));
|
||||
globMin.setHighLimit(p + 1, 10.*init(p + 1));
|
||||
locMin.setLowLimit(p, 0.);
|
||||
}
|
||||
globMin.setPrecision(0.001);
|
||||
globMin.setMaxIteration(100000);
|
||||
globMin.setVerbosity(verbosity);
|
||||
locMin.setMaxIteration(1000000);
|
||||
locMin.setVerbosity(verbosity);
|
||||
for (Index t = 0; t < nt; ++t)
|
||||
{
|
||||
data.fitPoint((t >= ti) and (t <= tf)
|
||||
and ((t - ti) % thinning == 0), t);
|
||||
}
|
||||
if (doCorr)
|
||||
{
|
||||
cout << "-- uncorrelated fit..." << endl;
|
||||
}
|
||||
cout << "using model '" << model << "'" << endl;
|
||||
data.setSvdTolerance(svdTol);
|
||||
data.assumeYYCorrelated(false, 0, 0);
|
||||
fit = data.fit(unCorrMin, init, mod);
|
||||
fit.print();
|
||||
if (doCorr)
|
||||
{
|
||||
cout << "-- correlated fit..." << endl;
|
||||
cout << "using model '" << model << "'" << endl;
|
||||
init = fit[central];
|
||||
data.assumeYYCorrelated(true, 0, 0);
|
||||
fit = data.fit(locMin, init, mod);
|
||||
fit.print();
|
||||
}
|
||||
|
||||
// plots ///////////////////////////////////////////////////////////////////
|
||||
if (doPlot)
|
||||
{
|
||||
Plot p;
|
||||
DMatSample effMass(nSample);
|
||||
DVec effMassT, fitErr;
|
||||
Index maxT = (coshModel) ? (nt - 2) : (nt - 1);
|
||||
double e0, e0Err;
|
||||
|
||||
p << PlotRange(Axis::x, 0, nt - 1);
|
||||
p << LogScale(Axis::y);
|
||||
p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1);
|
||||
p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1);
|
||||
p << Color("rgb 'red'") << PlotData(data.getData());
|
||||
p.display();
|
||||
effMass.resizeMat(maxT, 1);
|
||||
effMassT.setLinSpaced(maxT, 1, maxT);
|
||||
fitErr = fit.variance().cwiseSqrt();
|
||||
e0 = fit[central](0);
|
||||
e0Err = fitErr(0);
|
||||
if (coshModel)
|
||||
{
|
||||
FOR_STAT_ARRAY(effMass, s)
|
||||
{
|
||||
for (Index t = 1; t < nt - 1; ++t)
|
||||
{
|
||||
effMass[s](t - 1) = acosh((corr[s](t-1) + corr[s](t+1))
|
||||
/(2.*corr[s](t)));
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
FOR_STAT_ARRAY(effMass, s)
|
||||
{
|
||||
for (Index t = 1; t < nt; ++t)
|
||||
{
|
||||
effMass[s](t - 1) = log(corr[s](t-1)/corr[s](t));
|
||||
}
|
||||
}
|
||||
}
|
||||
p.reset();
|
||||
p << PlotRange(Axis::x, 1, maxT);
|
||||
p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err);
|
||||
p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err);
|
||||
p << Color("rgb 'blue'") << PlotHLine(e0);
|
||||
p << Color("rgb 'red'") << PlotData(effMassT, effMass);
|
||||
p.display();
|
||||
p.save("test");
|
||||
}
|
||||
if (doHeatmap)
|
||||
{
|
||||
Plot p;
|
||||
Index n = data.getFitVarMat().rows();
|
||||
DMat id = DMat::Identity(n, n);
|
||||
|
||||
p << PlotMatrix(Math::varToCorr(data.getFitVarMat()));
|
||||
p << Caption("correlation matrix");
|
||||
p.display();
|
||||
if (svdTol > 0.)
|
||||
{
|
||||
p.reset();
|
||||
p << PlotMatrix(id - data.getFitVarMat()*data.getFitVarMatPInv());
|
||||
p << Caption("singular space projector");
|
||||
p.display();
|
||||
}
|
||||
}
|
||||
|
||||
// output //////////////////////////////////////////////////////////////////
|
||||
if (!outFileName.empty())
|
||||
{
|
||||
Io::save(fit, outFileName);
|
||||
}
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
1
physics/LatAnalyze
Symbolic link
1
physics/LatAnalyze
Symbolic link
@ -0,0 +1 @@
|
||||
../lib
|
15
physics/Makefile.am
Normal file
15
physics/Makefile.am
Normal file
@ -0,0 +1,15 @@
|
||||
if CXX_GNU
|
||||
COM_CXXFLAGS = -Wall -W -pedantic -Wno-deprecated-declarations
|
||||
else
|
||||
if CXX_INTEL
|
||||
COM_CXXFLAGS = -wd1682 -Wall
|
||||
endif
|
||||
endif
|
||||
|
||||
bin_PROGRAMS = latan-2pt-fit
|
||||
|
||||
latan_2pt_fit_SOURCES = 2pt-fit.cpp
|
||||
latan_2pt_fit_CXXFLAGS = $(COM_CXXFLAGS)
|
||||
latan_2pt_fit_LDFLAGS = -L../lib/.libs -lLatAnalyze
|
||||
|
||||
ACLOCAL_AMFLAGS = -I .buildutils/m4
|
Loading…
Reference in New Issue
Block a user