mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2025-06-18 07:17:05 +01:00
simplification of the Minuit minimiser interface, (successful) test of the new fit interface
This commit is contained in:
@ -1,6 +1,7 @@
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <LatAnalyze/CompiledModel.hpp>
|
||||
#include <LatAnalyze/Io.hpp>
|
||||
#include <LatAnalyze/MinuitMinimizer.hpp>
|
||||
#include <LatAnalyze/RandGen.hpp>
|
||||
#include <LatAnalyze/XYStatData.hpp>
|
||||
@ -8,39 +9,50 @@
|
||||
using namespace std;
|
||||
using namespace Latan;
|
||||
|
||||
const Index nPoint = 30;
|
||||
const double xErr = .2, yErr = .1;
|
||||
const double exactPar[2] = {0.5,5.0}, dx = 10.0/static_cast<double>(nPoint);
|
||||
const Index nPoint1 = 5, nPoint2 = 5;
|
||||
const double xErr = .1, yErr = .1;
|
||||
const double exactPar[2] = {0.5,5.};
|
||||
const double dx1 = 10.0/static_cast<double>(nPoint1);
|
||||
const double dx2 = 5.0/static_cast<double>(nPoint2);
|
||||
|
||||
int main(void)
|
||||
{
|
||||
// generate fake data
|
||||
XYStatData data;
|
||||
RandGen rg;
|
||||
double x1_k, x2_k;
|
||||
double xBuf[2];
|
||||
DoubleModel f([](const double *x, const double *p)
|
||||
{return p[1]*exp(-x[0]*p[0]);}, 1, 2);
|
||||
{return p[1]*exp(-x[0]*p[0])+x[1];}, 2, 2);
|
||||
|
||||
data.addXDim("x", nPoint);
|
||||
data.addXDim("x", nPoint1);
|
||||
data.addXDim("off", nPoint2);
|
||||
data.addYDim("y");
|
||||
for (Index k = 0; k < nPoint; ++k)
|
||||
for (Index i1 = 0; i1 < nPoint1; ++i1)
|
||||
{
|
||||
x1_k = rg.gaussian(k*dx, xErr);
|
||||
x2_k = rg.gaussian(k*dx, xErr);
|
||||
data.x(k) = x1_k;
|
||||
data.y(k) = rg.gaussian(f(&x2_k, exactPar), yErr);
|
||||
printf("% 8e % 8e % 8e % 8e\n", data.x(k), data.y(k), xErr, yErr);
|
||||
xBuf[0] = i1*dx1;
|
||||
data.x(i1, 0) = rg.gaussian(xBuf[0], xErr);
|
||||
for (Index i2 = 0; i2 < nPoint2; ++i2)
|
||||
{
|
||||
xBuf[1] = i2*dx2;
|
||||
data.x(i2, 1) = xBuf[1];
|
||||
data.y(data.dataIndex(i1, i2)) = rg.gaussian(f(xBuf, exactPar),
|
||||
yErr);
|
||||
printf("% 8e % 8e % 8e % 8e % 8e\n", data.x(i1, 0), xErr,
|
||||
data.x(i2, 1), data.y(i1), yErr);
|
||||
}
|
||||
}
|
||||
cout << endl;
|
||||
data.setXError(0, DVec::Constant(nPoint, xErr));
|
||||
data.setYError(0, DVec::Constant(nPoint, yErr));
|
||||
data.setXError(0, DVec::Constant(data.getXSize(0), xErr));
|
||||
data.assumeXExact(true, 1);
|
||||
data.setYError(0, DVec::Constant(data.getYSize(), yErr));
|
||||
cout << data << endl;
|
||||
|
||||
// fit
|
||||
DVec init = DVec::Constant(2, 0.5);
|
||||
DVec init = DVec::Constant(2, 0.1);
|
||||
FitResult p;
|
||||
MinuitMinimizer minimizer;
|
||||
|
||||
minimizer.setVerbosity(Minimizer::Verbosity::Normal);
|
||||
p = data.fit(minimizer, init, f);
|
||||
cout << "a= " << p(0) << " b= " << p(1) << endl;
|
||||
cout << "chi^2/ndof= " << p.getChi2PerDof() << endl;
|
||||
|
@ -8,41 +8,49 @@
|
||||
using namespace std;
|
||||
using namespace Latan;
|
||||
|
||||
const Index nPoint = 30;
|
||||
const Index nPoint1 = 10, nPoint2 = 10;
|
||||
const Index nSample = 1000;
|
||||
const double xErr = .2, yErr = .1;
|
||||
const double exactPar[2] = {0.5,5.0}, dx = 10.0/static_cast<double>(nPoint);
|
||||
const double xErr = .1, yErr = .1;
|
||||
const double exactPar[2] = {0.5,5.};
|
||||
const double dx1 = 10.0/static_cast<double>(nPoint1);
|
||||
const double dx2 = 5.0/static_cast<double>(nPoint2);
|
||||
|
||||
int main(void)
|
||||
{
|
||||
// generate fake data
|
||||
DMatSample x(nSample, nPoint, 1), y(nSample, nPoint, 1);
|
||||
XYSampleData data(nSample);
|
||||
RandGen rg;
|
||||
double x1_k, x2_k;
|
||||
DoubleModel f([](const double *t, const double *p)
|
||||
{return p[1]*exp(-t[0]*p[0]);}, 1, 2);
|
||||
RandGen rg;
|
||||
double xBuf[2];
|
||||
DoubleModel f([](const double *x, const double *p)
|
||||
{return p[1]*exp(-x[0]*p[0])+x[1];}, 2, 2);
|
||||
|
||||
data.addXDim("x", nPoint);
|
||||
data.addXDim("x", nPoint1);
|
||||
data.addXDim("off", nPoint2);
|
||||
data.addYDim("y");
|
||||
FOR_STAT_ARRAY(x, s)
|
||||
for (Index s = central; s < nSample; ++s)
|
||||
{
|
||||
for (Index k = 0; k < nPoint; ++k)
|
||||
for (Index i1 = 0; i1 < nPoint1; ++i1)
|
||||
{
|
||||
x1_k = rg.gaussian(k*dx, xErr);
|
||||
x2_k = rg.gaussian(k*dx, xErr);
|
||||
data.x(k)[s] = x1_k;
|
||||
data.y(k)[s] = rg.gaussian(f(&x2_k, exactPar), yErr);
|
||||
xBuf[0] = i1*dx1;
|
||||
data.x(i1, 0)[s] = rg.gaussian(xBuf[0], xErr);
|
||||
for (Index i2 = 0; i2 < nPoint2; ++i2)
|
||||
{
|
||||
xBuf[1] = i2*dx2;
|
||||
data.x(i2, 1)[s] = xBuf[1];
|
||||
data.y(data.dataIndex(i1, i2))[s] =
|
||||
rg.gaussian(f(xBuf, exactPar), yErr);
|
||||
}
|
||||
}
|
||||
}
|
||||
data.assumeXExact(true, 1);
|
||||
cout << data << endl;
|
||||
|
||||
// fit
|
||||
DVec init = DVec::Constant(2, 0.5);
|
||||
DVec init = DVec::Constant(2, 0.1);
|
||||
DMat err;
|
||||
SampleFitResult p;
|
||||
MinuitMinimizer minimizer;
|
||||
|
||||
|
||||
p = data.fit(minimizer, init, f);
|
||||
err = p.variance().cwiseSqrt();
|
||||
cout << "a= " << p[central](0) << " +/- " << err(0) << endl;
|
||||
|
Reference in New Issue
Block a user