diff --git a/lib/Statistics/XYSampleData.cpp b/lib/Statistics/XYSampleData.cpp index 73e5e51..e455518 100644 --- a/lib/Statistics/XYSampleData.cpp +++ b/lib/Statistics/XYSampleData.cpp @@ -20,6 +20,7 @@ #include #include #include +// #include using namespace std; using namespace Latan; @@ -234,22 +235,18 @@ DVec XYSampleData::getYError(const Index j) return data_.getYError(j); } -void XYSampleData::setChi2PerDofBound(double upper_lim, double lower_lim) +void XYSampleData::setChi2PerDofBound(double uLim, double lLim) { - chi2PerDofu_ = upper_lim; - chi2PerDofl_ = lower_lim; -} - -bool XYSampleData::checkFit() -{ - return goodFit_; + chi2PerDofu_ = uLim; + chi2PerDofl_ = lLim; } void XYSampleData::checkChi2PerDof(double Chi2PerDof) { if(Chi2PerDof >= chi2PerDofu_ or Chi2PerDof < chi2PerDofl_ or isnan(Chi2PerDof)) { - goodFit_ = false; + string msg = "central chi2perDof = " + to_string(Chi2PerDof) + " not within user-set bound of " + to_string(chi2PerDofl_) + " < chi2PerDof < " + to_string(chi2PerDofu_) ; + LATAN_ERROR(Runtime, msg); } } @@ -312,11 +309,8 @@ SampleFitResult XYSampleData::fit(std::vector &minimizer, result.chi2_.resize(nSample_); result.model_.resize(v.size()); double chi2PerDof; - goodFit_ = true; FOR_STAT_ARRAY(result, s) { - if(goodFit_) - { setDataToSample(s); if (s == central) { @@ -337,7 +331,6 @@ SampleFitResult XYSampleData::fit(std::vector &minimizer, result.model_[j].resize(nSample_); result.model_[j][s] = sampleResult.getModel(j); } - } } result.nPar_ = sampleResult.getNPar(); result.nDof_ = sampleResult.nDof_; diff --git a/lib/Statistics/XYSampleData.hpp b/lib/Statistics/XYSampleData.hpp index a18103a..5109b6c 100644 --- a/lib/Statistics/XYSampleData.hpp +++ b/lib/Statistics/XYSampleData.hpp @@ -92,8 +92,7 @@ public: DVec getXError(const Index i); DVec getYError(const Index j); // fit criteria - void setChi2PerDofBound(double upper_lim, double lower_lim); - bool checkFit(); // check fit candidate based on chi2PerDof + void setChi2PerDofBound(double uLim, double lLim); void checkChi2PerDof(double Chi2PerDof); // get total fit variance matrix and its pseudo-inverse const DMat & getFitVarMat(void); @@ -137,7 +136,6 @@ private: Index nSample_, dataSample_{central}; bool initData_{true}, computeVarMat_{true}; bool initXMap_{true}; - bool goodFit_{true}; // used to break minimisation if central sample chi2PerDof is bad double chi2PerDofu_{1e10}, chi2PerDofl_{0}; };