1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 00:45:36 +00:00

Compare commits

...

7 Commits

11 changed files with 374 additions and 124 deletions

5
.gitignore vendored
View File

@ -25,9 +25,10 @@ lib/*Lexer.cpp
lib/*Parser.cpp
lib/*Parser.hpp
# Eigen headers
lib/Eigen/*
# Eigen headers and archives
lib/Eigen
lib/eigen_files.mk
eigen-*.tar.bz2
# CI builds
ci-scripts/local/*

View File

@ -2,5 +2,5 @@
rm -rf .buildutils
mkdir -p .buildutils/m4
./update_eigen.sh eigen-3.3.8.tar.bz2
./update_eigen.sh eigen-3.4.0.tar.bz2
autoreconf -fvi

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -e
PREFIX=`cat Makefile | grep '^prefix =' | awk '{print $3}'`
case $1 in
'')
echo '-- building...'
make -j8
echo '-- installing...'
make uninstall 1>/dev/null
make install 1>/dev/null;;
# if [[ `basename \`pwd\`` == "lib" ]]
# then
# echo '-- creating debug symbols...'
# dsymutil .libs/libLatAnalyze.0.dylib -o ${PREFIX}/lib/libLatAnalyze.0.dylib.dSYM
# fi;;
'clean')
echo '-- cleaning...'
make -j8 clean;;
*)
echo 'error: unknown action' 1>&2
exit 1;;
esac

Binary file not shown.

View File

@ -58,6 +58,7 @@ libLatAnalyze_la_SOURCES = \
Numerical/RootFinder.cpp \
Numerical/Solver.cpp \
Physics/CorrelatorFitter.cpp \
Physics/DataFilter.cpp \
Physics/EffectiveMass.cpp \
Statistics/FitInterface.cpp \
Statistics/Histogram.cpp \
@ -106,6 +107,7 @@ HPPFILES = \
Numerical/RootFinder.hpp \
Numerical/Solver.hpp \
Physics/CorrelatorFitter.hpp \
Physics/DataFilter.hpp \
Physics/EffectiveMass.hpp \
Statistics/Dataset.hpp \
Statistics/FitInterface.hpp \

View File

@ -32,46 +32,91 @@ DWT::DWT(const DWTFilter &filter)
{}
// convolution primitive ///////////////////////////////////////////////////////
void DWT::filterConvolution(DVec &out, const DVec &data,
const std::vector<double> &filter, const Index offset)
template <typename MatType>
void filterConvolution(MatType &out, const MatType &data,
const std::vector<double> &filter, const Index offset)
{
Index n = data.size(), nf = n*filter.size();
Index n = data.rows(), nf = n*filter.size();
out.resize(n);
out.resizeLike(data);
out.fill(0.);
for (unsigned int i = 0; i < filter.size(); ++i)
{
FOR_VEC(out, j)
FOR_MAT(out, j, k)
{
out(j) += filter[i]*data((j + i + nf - offset) % n);
out(j, k) += filter[i]*data((j + i + nf - offset) % n, k);
}
}
}
void DWT::filterConvolution(DVec &out, const DVec &data,
const std::vector<double> &filter, const Index offset)
{
::filterConvolution(out, data, filter, offset);
}
void DWT::filterConvolution(DMat &out, const DMat &data,
const std::vector<double> &filter, const Index offset)
{
::filterConvolution(out, data, filter, offset);
}
// downsampling/upsampling primitives //////////////////////////////////////////
template <typename MatType>
void downsample(MatType &out, const MatType &in)
{
if (out.rows() < in.rows()/2)
{
LATAN_ERROR(Size, "output rows smaller than half the input vector rows");
}
if (out.cols() != in.cols())
{
LATAN_ERROR(Size, "output and input number of columns mismatch");
}
for (Index j = 0; j < in.cols(); j++)
for (Index i = 0; i < in.rows(); i += 2)
{
out(i/2, j) = in(i, j);
}
}
void DWT::downsample(DVec &out, const DVec &in)
{
if (out.size() < in.size()/2)
::downsample(out, in);
}
void DWT::downsample(DMat &out, const DMat &in)
{
::downsample(out, in);
}
template <typename MatType>
void upsample(MatType &out, const MatType &in)
{
if (out.size() < 2*in.size())
{
LATAN_ERROR(Size, "output vector smaller than half the input vector size");
LATAN_ERROR(Size, "output rows smaller than twice the input rows");
}
for (Index i = 0; i < in.size(); i += 2)
if (out.cols() != in.cols())
{
out(i/2) = in(i);
LATAN_ERROR(Size, "output and input number of columns mismatch");
}
out.block(0, 0, 2*in.size(), out.cols()).fill(0.);
for (Index j = 0; j < in.cols(); j++)
for (Index i = 0; i < in.size(); i ++)
{
out(2*i, j) = in(i, j);
}
}
void DWT::upsample(DVec &out, const DVec &in)
{
if (out.size() < 2*in.size())
{
LATAN_ERROR(Size, "output vector smaller than twice the input vector size");
}
out.segment(0, 2*in.size()).fill(0.);
for (Index i = 0; i < in.size(); i ++)
{
out(2*i) = in(i);
}
::upsample(out, in);
}
void DWT::upsample(DMat &out, const DMat &in)
{
::upsample(out, in);
}
// DWT /////////////////////////////////////////////////////////////////////////

View File

@ -22,6 +22,7 @@
#include <LatAnalyze/Global.hpp>
#include <LatAnalyze/Numerical/DWTFilters.hpp>
#include <LatAnalyze/Core/Mat.hpp>
BEGIN_LATAN_NAMESPACE
@ -40,9 +41,13 @@ public:
// convolution primitive
static void filterConvolution(DVec &out, const DVec &data,
const std::vector<double> &filter, const Index offset);
static void filterConvolution(DMat &out, const DMat &data,
const std::vector<double> &filter, const Index offset);
// downsampling/upsampling primitives
static void downsample(DVec &out, const DVec &in);
static void downsample(DMat &out, const DMat &in);
static void upsample(DVec &out, const DVec &in);
static void upsample(DMat &out, const DMat &in);
// DWT
std::vector<DWTLevel> forward(const DVec &data, const unsigned int level) const;
DVec backward(const std::vector<DWTLevel>& dwt) const;

View File

@ -0,0 +1,83 @@
/*
* DataFilter.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/Physics/DataFilter.hpp>
#include <LatAnalyze/includes.hpp>
#include <LatAnalyze/Numerical/DWT.hpp>
using namespace std;
using namespace Latan;
/******************************************************************************
* DataFilter implementation *
******************************************************************************/
// constructor ////////////////////////////////////////////////////////////////
DataFilter::DataFilter(const vector<double> &filter, const bool downsample)
: filter_(filter), downsample_(downsample)
{}
// filtering //////////////////////////////////////////////////////////////////
template <typename MatType>
void filter(MatType &out, const MatType &in, const vector<double> &filter,
const bool downsample, MatType &buf)
{
if (!downsample)
{
out.resizeLike(in);
DWT::filterConvolution(out, in, filter, filter.size()/2);
}
else
{
out.resize(in.rows()/2, in.cols());
buf.resizeLike(in);
DWT::filterConvolution(buf, in, filter, filter.size()/2);
DWT::downsample(out, buf);
}
}
void DataFilter::operator()(DVec &out, const DVec &in)
{
filter(out, in, filter_, downsample_, vBuf_);
}
void DataFilter::operator()(DMat &out, const DMat &in)
{
filter(out, in, filter_, downsample_, mBuf_);
}
/******************************************************************************
* LaplaceDataFilter implementation *
******************************************************************************/
// constructor ////////////////////////////////////////////////////////////////
LaplaceDataFilter::LaplaceDataFilter(const bool downsample)
: DataFilter({1., -2. , 1.}, downsample)
{}
// filtering //////////////////////////////////////////////////////////////////
void LaplaceDataFilter::operator()(DVec &out, const DVec &in, const double lambda)
{
filter_[1] = -2. - lambda;
DataFilter::operator()(out, in);
}
void LaplaceDataFilter::operator()(DMat &out, const DMat &in, const double lambda)
{
filter_[1] = -2. - lambda;
DataFilter::operator()(out, in);
}

139
lib/Physics/DataFilter.hpp Normal file
View File

@ -0,0 +1,139 @@
/*
* DataFilter.hpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef Latan_DataFilter_hpp_
#define Latan_DataFilter_hpp_
#include <LatAnalyze/Global.hpp>
#include <LatAnalyze/Core/Math.hpp>
#include <LatAnalyze/Statistics/StatArray.hpp>
#include <LatAnalyze/Statistics/MatSample.hpp>
#include <LatAnalyze/Numerical/Minimizer.hpp>
BEGIN_LATAN_NAMESPACE
/******************************************************************************
* Generic convolution filter class *
******************************************************************************/
class DataFilter
{
public:
// constructor
DataFilter(const std::vector<double> &filter, const bool downsample = false);
// filtering
void operator()(DVec &out, const DVec &in);
void operator()(DMat &out, const DMat &in);
template <typename MatType, Index o>
void operator()(StatArray<MatType, o> &out, const StatArray<MatType, o> &in);
protected:
std::vector<double> filter_;
private:
bool downsample_;
DVec vBuf_;
DMat mBuf_;
};
/******************************************************************************
* Laplacian filter class *
******************************************************************************/
class LaplaceDataFilter: public DataFilter
{
public:
// constructor
LaplaceDataFilter(const bool downsample = false);
// filtering
void operator()(DVec &out, const DVec &in, const double lambda = 0.);
void operator()(DMat &out, const DMat &in, const double lambda = 0.);
template <typename MatType, Index o>
void operator()(StatArray<MatType, o> &out, const StatArray<MatType, o> &in,
const double lambda = 0.);
// correlation optimisation
template <typename MatType, Index o>
double optimiseCdr(const StatArray<MatType, o> &data, Minimizer &min,
const unsigned int nPass = 3);
};
/******************************************************************************
* DataFilter class template implementation *
******************************************************************************/
// filtering //////////////////////////////////////////////////////////////////
template <typename MatType, Index o>
void DataFilter::operator()(StatArray<MatType, o> &out, const StatArray<MatType, o> &in)
{
FOR_STAT_ARRAY(in, s)
{
(*this)(out[s], in[s]);
}
}
/******************************************************************************
* LaplaceDataFilter class template implementation *
******************************************************************************/
// filtering //////////////////////////////////////////////////////////////////
template <typename MatType, Index o>
void LaplaceDataFilter::operator()(StatArray<MatType, o> &out,
const StatArray<MatType, o> &in, const double lambda)
{
FOR_STAT_ARRAY(in, s)
{
(*this)(out[s], in[s], lambda);
}
}
// correlation optimisation ///////////////////////////////////////////////////
template <typename MatType, Index o>
double LaplaceDataFilter::optimiseCdr(const StatArray<MatType, o> &data,
Minimizer &min, const unsigned int nPass)
{
StatArray<MatType, o> fdata(data.size());
DVec init(1);
double reg, prec;
DoubleFunction cdr([&data, &fdata, this](const double *x)
{
double res;
(*this)(fdata, data, x[0]);
res = Math::cdr(fdata.correlationMatrix());
return res;
}, 1);
min.setLowLimit(0., -0.1);
min.setHighLimit(0., 100000.);
init(0) = 0.1;
min.setInit(init);
prec = 0.1;
min.setPrecision(prec);
reg = min(cdr)(0);
for (unsigned int pass = 0; pass < nPass; pass++)
{
min.setLowLimit(0., (1.-10.*prec)*reg);
min.setHighLimit(0., (1.+10.*prec)*reg);
init(0) = reg;
min.setInit(init);
prec *= 0.1;
min.setPrecision(prec);
reg = min(cdr)(0);
}
return reg;
}
END_LATAN_NAMESPACE
#endif // Latan_DataFilter_hpp_

View File

@ -103,10 +103,6 @@ public:
const Index nCol);
// resize all matrices
void resizeMat(const Index nRow, const Index nCol);
// covariance matrix
Mat<T> covarianceMatrix(const MatSample<T> &sample) const;
Mat<T> varianceMatrix(void) const;
Mat<T> correlationMatrix(void) const;
};
// non-member operators
@ -383,79 +379,6 @@ void MatSample<T>::resizeMat(const Index nRow, const Index nCol)
}
}
// covariance matrix ///////////////////////////////////////////////////////////
template <typename T>
Mat<T> MatSample<T>::covarianceMatrix(const MatSample<T> &sample) const
{
if (((*this)[central].cols() != 1) or (sample[central].cols() != 1))
{
LATAN_ERROR(Size, "samples have more than one column");
}
Index n1 = (*this)[central].rows(), n2 = sample[central].rows();
Index nSample = this->size();
Mat<T> tmp1(n1, nSample), tmp2(n2, nSample), res(n1, n2);
Mat<T> s1(n1, 1), s2(n2, 1), one(nSample, 1);
one.fill(1.);
s1.fill(0.);
s2.fill(0.);
for (unsigned int s = 0; s < nSample; ++s)
{
s1 += (*this)[s];
tmp1.col(s) = (*this)[s];
}
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
for (unsigned int s = 0; s < nSample; ++s)
{
s2 += sample[s];
tmp2.col(s) = sample[s];
}
tmp2 -= s2*one.transpose()/static_cast<double>(nSample);
res = tmp1*tmp2.transpose()/static_cast<double>(nSample - 1);
return res;
}
template <typename T>
Mat<T> MatSample<T>::varianceMatrix(void) const
{
if ((*this)[central].cols() != 1)
{
LATAN_ERROR(Size, "samples have more than one column");
}
Index n1 = (*this)[central].rows();
Index nSample = this->size();
Mat<T> tmp1(n1, nSample), res(n1, n1);
Mat<T> s1(n1, 1), one(nSample, 1);
one.fill(1.);
s1.fill(0.);
for (unsigned int s = 0; s < nSample; ++s)
{
s1 += (*this)[s];
tmp1.col(s) = (*this)[s];
}
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
res = tmp1*tmp1.transpose()/static_cast<double>(nSample - 1);
return res;
}
template <typename T>
Mat<T> MatSample<T>::correlationMatrix(void) const
{
Mat<T> res = varianceMatrix();
Mat<T> invDiag(res.rows(), 1);
invDiag = res.diagonal();
invDiag = invDiag.cwiseInverse().cwiseSqrt();
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
return res;
}
END_LATAN_NAMESPACE
#endif // Latan_MatSample_hpp_

View File

@ -52,10 +52,13 @@ public:
// statistics
void bin(Index binSize);
T sum(const Index pos = 0, const Index n = -1) const;
T meanOld(const Index pos = 0, const Index n = -1) const;
T mean(const Index pos = 0, const Index n = -1) const;
T covariance(const StatArray<T, os> &array) const;
T variance(void) const;
T covarianceMatrix(const StatArray<T, os> &data) const;
T varianceMatrix(void) const;
T correlationMatrix(void) const;
// IO type
virtual IoType getType(void) const;
public:
@ -192,6 +195,79 @@ T StatArray<T, os>::variance(void) const
return covariance(*this);
}
template <typename MatType, Index os>
MatType StatArray<MatType, os>::covarianceMatrix(
const StatArray<MatType, os> &data) const
{
if (((*this)[central].cols() != 1) or (data[central].cols() != 1))
{
LATAN_ERROR(Size, "samples have more than one column");
}
Index n1 = (*this)[central].rows(), n2 = data[central].rows();
Index nSample = this->size();
MatType tmp1(n1, nSample), tmp2(n2, nSample), res(n1, n2);
MatType s1(n1, 1), s2(n2, 1), one(nSample, 1);
one.fill(1.);
s1.fill(0.);
s2.fill(0.);
for (unsigned int s = 0; s < nSample; ++s)
{
s1 += (*this)[s];
tmp1.col(s) = (*this)[s];
}
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
for (unsigned int s = 0; s < nSample; ++s)
{
s2 += data[s];
tmp2.col(s) = data[s];
}
tmp2 -= s2*one.transpose()/static_cast<double>(nSample);
res = tmp1*tmp2.transpose()/static_cast<double>(nSample - 1);
return res;
}
template <typename MatType, Index os>
MatType StatArray<MatType, os>::varianceMatrix(void) const
{
if ((*this)[0].cols() != 1)
{
LATAN_ERROR(Size, "samples have more than one column");
}
Index n1 = (*this)[0].rows();
Index nSample = this->size();
MatType tmp1(n1, nSample), res(n1, n1);
MatType s1(n1, 1), one(nSample, 1);
one.fill(1.);
s1.fill(0.);
for (unsigned int s = 0; s < nSample; ++s)
{
s1 += (*this)[s];
tmp1.col(s) = (*this)[s];
}
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
res = tmp1*tmp1.transpose()/static_cast<double>(nSample - 1);
return res;
}
template <typename MatType, Index os>
MatType StatArray<MatType, os>::correlationMatrix(void) const
{
MatType res = varianceMatrix();
MatType invDiag(res.rows(), 1);
invDiag = res.diagonal();
invDiag = invDiag.cwiseInverse().cwiseSqrt();
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
return res;
}
// reduction operations ////////////////////////////////////////////////////////
namespace StatOp
{