1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2025-11-15 12:09:32 +00:00

5 Commits

Author SHA1 Message Date
e72d8669b1 empirical p-value function 2025-07-01 17:07:37 +01:00
b0782552d1 safer convolution 2025-06-27 15:58:47 +01:00
fef0f3704c step plot 2025-06-27 15:58:36 +01:00
e4861e7b50 Hotelling T2 p-value 2025-06-19 22:24:50 +01:00
ee60d083c8 2D grid plot 2025-06-19 22:22:53 +01:00
8 changed files with 104 additions and 1 deletions

View File

@@ -32,9 +32,10 @@ int main(void)
for (double s = 1.; s < 5.; ++s) for (double s = 1.; s < 5.; ++s)
{ {
auto ci = h.confidenceInterval(s); auto ci = h.confidenceInterval(s);
cout << static_cast<int>(s) << " sigma(s) interval= ["; cout << static_cast<int>(s) << " sigma(s) interval= [";
cout << ci.first << ", " << ci.second << "]" << endl; cout << ci.first << ", " << ci.second << "]" << endl;
cout << "P(X > " << s << ") = " << h.pValue(s) + 1. - h.pValue(-s) << endl;
} }
p << PlotHistogram(h); p << PlotHistogram(h);
p << PlotFunction(compile("return exp(-x_0^2/2)/sqrt(2*pi);", 1), -5., 5.); p << PlotFunction(compile("return exp(-x_0^2/2)/sqrt(2*pi);", 1), -5., 5.);

View File

@@ -166,5 +166,17 @@ auto chi2CcdfVecFunc = [](const double arg[2])
return gsl_cdf_chisq_Q(arg[0], arg[1]); return gsl_cdf_chisq_Q(arg[0], arg[1]);
}; };
auto hotellingT2PValueVecFunc = [](const double arg[3])
{
double T2 = arg[0];
double n = arg[1];
double p = arg[2];
double F = (n - p) / (p * (n - 1)) * T2;
double p_value = 1.0 - gsl_cdf_fdist_P(F, p, n - p);
return p_value;
};
DoubleFunction MATH_NAMESPACE::chi2PValue(chi2PValueVecFunc, 2); DoubleFunction MATH_NAMESPACE::chi2PValue(chi2PValueVecFunc, 2);
DoubleFunction MATH_NAMESPACE::chi2Ccdf(chi2CcdfVecFunc, 2); DoubleFunction MATH_NAMESPACE::chi2Ccdf(chi2CcdfVecFunc, 2);
DoubleFunction MATH_NAMESPACE::hotellingT2PValue(hotellingT2PValueVecFunc, 3);

View File

@@ -160,6 +160,7 @@ namespace MATH_NAMESPACE
{ {
extern DoubleFunction chi2PValue; extern DoubleFunction chi2PValue;
extern DoubleFunction chi2Ccdf; extern DoubleFunction chi2Ccdf;
extern DoubleFunction hotellingT2PValue;
} }
END_LATAN_NAMESPACE END_LATAN_NAMESPACE

View File

@@ -511,6 +511,57 @@ PlotImpulses::PlotImpulses(const DVec &x, const DVec &y)
setCommand("'" + tmpFileName + "' u 1:2 w impulses"); setCommand("'" + tmpFileName + "' u 1:2 w impulses");
} }
// PlotSteps constructor ////////////////////////////////////////////////////
PlotSteps::PlotSteps(const DVec &x, const DVec &y)
{
if (x.rows() != y.rows())
{
LATAN_ERROR(Size, "x and y vector does not have the same size");
}
DMat d(x.rows(), 2);
string tmpFileName;
for (Index i = 0; i < x.rows(); ++i)
{
d(i, 0) = x(i);
d(i, 1) = y(i);
}
tmpFileName = dumpToTmpFile(d);
pushTmpFile(tmpFileName);
setCommand("'" + tmpFileName + "' u 1:2 w steps");
}
// PlotGrid constructor ////////////////////////////////////////////////////////
PlotGrid::PlotGrid(const DVec &x, const DVec &y, const DMat &value)
{
if (x.size() != value.rows())
{
LATAN_ERROR(Size, "x vector does not have the same size as value matrix rows");
}
if (y.size() != value.cols())
{
LATAN_ERROR(Size, "y vector does not have the same size as value matrix columns");
}
if (value.rows() < 2 || value.cols() < 2)
{
LATAN_ERROR(Size, "value matrix must have at least 2 rows and 2 columns");
}
DMat d(value.cols()+1, value.rows()+1);
string tmpFileName;
d(0,0) = value.cols();
d.row(0).tail(value.cols()) = x;
d.col(0).tail(value.rows()) = y;
for (Index i = 0; i < value.rows(); ++i)
for (Index j = 0; j < value.cols(); ++j)
{
d(i+1, j+1) = value(j, i);
}
tmpFileName = dumpToTmpFile(d);
pushTmpFile(tmpFileName);
setCommand("'" + tmpFileName + "' nonuniform matrix w image");
}
// PlotMatrixNoRange constructor /////////////////////////////////////////////// // PlotMatrixNoRange constructor ///////////////////////////////////////////////
PlotMatrixNoRange::PlotMatrixNoRange(const DMat &m) PlotMatrixNoRange::PlotMatrixNoRange(const DMat &m)
{ {

View File

@@ -191,6 +191,15 @@ public:
virtual ~PlotHistogram(void) = default; virtual ~PlotHistogram(void) = default;
}; };
class PlotSteps: public PlotObject
{
public:
// constructor
PlotSteps(const DVec &x, const DVec &y);
// destructor
virtual ~PlotSteps(void) = default;
};
class PlotImpulses: public PlotObject class PlotImpulses: public PlotObject
{ {
public: public:
@@ -200,6 +209,15 @@ public:
virtual ~PlotImpulses(void) = default; virtual ~PlotImpulses(void) = default;
}; };
class PlotGrid: public PlotObject
{
public:
// constructor
PlotGrid(const DVec &x, const DVec &y, const DMat &value);
// destructor
virtual ~PlotGrid(void) = default;
};
class PlotMatrixNoRange: public PlotObject class PlotMatrixNoRange: public PlotObject
{ {
public: public:

View File

@@ -38,6 +38,10 @@ void filterConvolution(MatType &out, const MatType &data,
{ {
Index n = data.rows(), nf = n*filter.size(); Index n = data.rows(), nf = n*filter.size();
if (&out == &data)
{
LATAN_ERROR(Argument, "filter convolution does not support in-place operation");
}
out.resizeLike(data); out.resizeLike(data);
out.fill(0.); out.fill(0.);
for (unsigned int i = 0; i < filter.size(); ++i) for (unsigned int i = 0; i < filter.size(); ++i)

View File

@@ -162,6 +162,20 @@ double Histogram::operator()(const double x) const
return (*this)[static_cast<Index>(i)]; return (*this)[static_cast<Index>(i)];
} }
// p-value P(x > x0) ///////////////////////////////////////////////////////////
double Histogram::pValue(const double x0) const
{
Index n = data_.size();
double count = 0.;
FOR_STAT_ARRAY(data_, s)
{
count += (data_[s] > x0) ? 1. : 0.;
}
return count/n;
}
// percentiles & confidence interval /////////////////////////////////////////// // percentiles & confidence interval ///////////////////////////////////////////
double Histogram::percentile(const double p) const double Histogram::percentile(const double p) const
{ {

View File

@@ -54,6 +54,8 @@ public:
double getX(const Index i) const; double getX(const Index i) const;
double operator[](const Index i) const; double operator[](const Index i) const;
double operator()(const double x) const; double operator()(const double x) const;
// p-value P(x > x0)
double pValue(const double x0) const;
// percentiles & confidence interval // percentiles & confidence interval
double percentile(const double p) const; double percentile(const double p) const;
double median(void) const; double median(void) const;