mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2025-06-20 08:16:55 +01:00
Compare commits
13 Commits
andrew-pr
...
4823426d55
Author | SHA1 | Date | |
---|---|---|---|
4823426d55 | |||
a620ff7b1c | |||
00cf854408 | |||
b938a855e3 | |||
83e09b82fc | |||
fde57d79f3 | |||
145155f733 | |||
6739019c83 | |||
13fddf4947 | |||
1604b4712f | |||
c73b609ac5 | |||
05138baa08 | |||
a0bdbfd9dd |
2
.github/workflows/build-macos.yml
vendored
2
.github/workflows/build-macos.yml
vendored
@ -1,6 +1,6 @@
|
||||
name: Build macOS
|
||||
|
||||
on: [push]
|
||||
on: [push, workflow_dispatch]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
5
.gitignore
vendored
5
.gitignore
vendored
@ -25,9 +25,10 @@ lib/*Lexer.cpp
|
||||
lib/*Parser.cpp
|
||||
lib/*Parser.hpp
|
||||
|
||||
# Eigen headers
|
||||
lib/Eigen/*
|
||||
# Eigen headers and archives
|
||||
lib/Eigen
|
||||
lib/eigen_files.mk
|
||||
eigen-*.tar.bz2
|
||||
|
||||
# CI builds
|
||||
ci-scripts/local/*
|
||||
|
@ -2,5 +2,5 @@
|
||||
|
||||
rm -rf .buildutils
|
||||
mkdir -p .buildutils/m4
|
||||
./update_eigen.sh eigen-3.3.8.tar.bz2
|
||||
./update_eigen.sh eigen-3.4.0.tar.bz2
|
||||
autoreconf -fvi
|
||||
|
24
build.sh
24
build.sh
@ -1,24 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
PREFIX=`cat Makefile | grep '^prefix =' | awk '{print $3}'`
|
||||
case $1 in
|
||||
'')
|
||||
echo '-- building...'
|
||||
make -j8
|
||||
echo '-- installing...'
|
||||
make uninstall 1>/dev/null
|
||||
make install 1>/dev/null;;
|
||||
# if [[ `basename \`pwd\`` == "lib" ]]
|
||||
# then
|
||||
# echo '-- creating debug symbols...'
|
||||
# dsymutil .libs/libLatAnalyze.0.dylib -o ${PREFIX}/lib/libLatAnalyze.0.dylib.dSYM
|
||||
# fi;;
|
||||
'clean')
|
||||
echo '-- cleaning...'
|
||||
make -j8 clean;;
|
||||
*)
|
||||
echo 'error: unknown action' 1>&2
|
||||
exit 1;;
|
||||
esac
|
Binary file not shown.
@ -7,7 +7,7 @@
|
||||
using namespace std;
|
||||
using namespace Latan;
|
||||
|
||||
constexpr Index size = 8;
|
||||
constexpr Index n = 8;
|
||||
constexpr Index nDraw = 20000;
|
||||
constexpr Index nSample = 2000;
|
||||
const string stateFileName = "exRand.seed";
|
||||
@ -40,14 +40,14 @@ int main(void)
|
||||
p << PlotFunction(compile("return exp(-x_0^2/2)/sqrt(2*pi);", 1), -5., 5.);
|
||||
p.display();
|
||||
|
||||
DMat var(size, size);
|
||||
DVec mean(size);
|
||||
DMatSample sample(nSample, size, 1);
|
||||
DMat var(n, n);
|
||||
DVec mean(n);
|
||||
DMatSample sample(nSample, n, 1);
|
||||
|
||||
cout << "-- generating " << nSample << " Gaussian random vectors..." << endl;
|
||||
var = DMat::Random(size, size);
|
||||
var = DMat::Random(n, n);
|
||||
var *= var.adjoint();
|
||||
mean = DVec::Random(size);
|
||||
mean = DVec::Random(n);
|
||||
RandomNormal mgauss(mean, var, rd());
|
||||
sample[central] = mgauss();
|
||||
FOR_STAT_ARRAY(sample, s)
|
||||
|
@ -18,6 +18,7 @@
|
||||
*/
|
||||
|
||||
#include <LatAnalyze/Core/Math.hpp>
|
||||
#include <LatAnalyze/Numerical/GslFFT.hpp>
|
||||
#include <LatAnalyze/includes.hpp>
|
||||
#include <gsl/gsl_cdf.h>
|
||||
|
||||
@ -48,16 +49,42 @@ DMat MATH_NAMESPACE::corrToVar(const DMat &corr, const DVec &varDiag)
|
||||
return res;
|
||||
}
|
||||
|
||||
double MATH_NAMESPACE::svdDynamicRange(const DMat &mat)
|
||||
double MATH_NAMESPACE::conditionNumber(const DMat &mat)
|
||||
{
|
||||
DVec s = mat.singularValues();
|
||||
|
||||
return s.maxCoeff()/s.minCoeff();
|
||||
}
|
||||
|
||||
double MATH_NAMESPACE::svdDynamicRangeDb(const DMat &mat)
|
||||
double MATH_NAMESPACE::cdr(const DMat &mat)
|
||||
{
|
||||
return 10.*log10(svdDynamicRange(mat));
|
||||
return 10.*log10(conditionNumber(mat));
|
||||
}
|
||||
|
||||
template <typename FFT>
|
||||
double nsdr(const DMat &m)
|
||||
{
|
||||
Index n = m.rows();
|
||||
FFT fft(n);
|
||||
CMat buf(n, 1);
|
||||
|
||||
FOR_VEC(buf, i)
|
||||
{
|
||||
buf(i) = 0.;
|
||||
for (Index j = 0; j < n; ++j)
|
||||
{
|
||||
buf(i) += m(j, (i+j) % n);
|
||||
}
|
||||
buf(i) /= n;
|
||||
}
|
||||
fft(buf, FFT::Forward);
|
||||
|
||||
return 10.*log10(buf.real().maxCoeff()/buf.real().minCoeff());
|
||||
}
|
||||
|
||||
double MATH_NAMESPACE::nsdr(const DMat &mat)
|
||||
{
|
||||
return ::nsdr<GslFFT>(mat);
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
|
@ -73,8 +73,9 @@ namespace MATH_NAMESPACE
|
||||
DMat corrToVar(const DMat &corr, const DVec &varDiag);
|
||||
|
||||
// matrix SVD dynamic range
|
||||
double svdDynamicRange(const DMat &mat);
|
||||
double svdDynamicRangeDb(const DMat &mat);
|
||||
double conditionNumber(const DMat &mat);
|
||||
double cdr(const DMat &mat);
|
||||
double nsdr(const DMat &mat);
|
||||
|
||||
// Constants
|
||||
constexpr double pi = 3.1415926535897932384626433832795028841970;
|
||||
|
@ -515,14 +515,16 @@ void Dash::operator()(PlotOptions &option) const
|
||||
}
|
||||
|
||||
// LogScale constructor ////////////////////////////////////////////////////////
|
||||
LogScale::LogScale(const Axis axis)
|
||||
LogScale::LogScale(const Axis axis, const double basis)
|
||||
: axis_(axis)
|
||||
, basis_(basis)
|
||||
{}
|
||||
|
||||
// Logscale modifier ///////////////////////////////////////////////////////////
|
||||
void LogScale::operator()(PlotOptions &option) const
|
||||
{
|
||||
option.scaleMode[static_cast<int>(axis_)] |= Plot::Scale::log;
|
||||
option.scaleMode[static_cast<int>(axis_)] |= Plot::Scale::log;
|
||||
option.logScaleBasis[static_cast<int>(axis_)] = basis_;
|
||||
}
|
||||
|
||||
// PlotRange constructors //////////////////////////////////////////////////////
|
||||
@ -915,11 +917,11 @@ ostream & Latan::operator<<(ostream &out, const Plot &plot)
|
||||
out << "unset log" << endl;
|
||||
if (plot.options_.scaleMode[x] & Plot::Scale::log)
|
||||
{
|
||||
out << "set log x" << endl;
|
||||
out << "set log x " << plot.options_.logScaleBasis[x] << endl;;
|
||||
}
|
||||
if (plot.options_.scaleMode[y] & Plot::Scale::log)
|
||||
{
|
||||
out << "set log y" << endl;
|
||||
out << "set log y " << plot.options_.logScaleBasis[y] << endl;
|
||||
}
|
||||
if (!plot.options_.label[x].empty())
|
||||
{
|
||||
|
@ -227,6 +227,7 @@ struct PlotOptions
|
||||
std::string caption;
|
||||
std::string title;
|
||||
unsigned int scaleMode[2];
|
||||
double logScaleBasis[2];
|
||||
Range scale[2];
|
||||
std::string label[2];
|
||||
std::string lineColor;
|
||||
@ -314,13 +315,14 @@ class LogScale: public PlotModifier
|
||||
{
|
||||
public:
|
||||
// constructor
|
||||
explicit LogScale(const Axis axis);
|
||||
explicit LogScale(const Axis axis, const double basis = 10);
|
||||
// destructor
|
||||
virtual ~LogScale(void) = default;
|
||||
// modifier
|
||||
virtual void operator()(PlotOptions &option) const;
|
||||
private:
|
||||
const Axis axis_;
|
||||
const double basis_;
|
||||
};
|
||||
|
||||
class PlotRange: public PlotModifier
|
||||
|
@ -58,6 +58,7 @@ libLatAnalyze_la_SOURCES = \
|
||||
Numerical/RootFinder.cpp \
|
||||
Numerical/Solver.cpp \
|
||||
Physics/CorrelatorFitter.cpp \
|
||||
Physics/DataFilter.cpp \
|
||||
Physics/EffectiveMass.cpp \
|
||||
Statistics/FitInterface.cpp \
|
||||
Statistics/Histogram.cpp \
|
||||
@ -106,6 +107,7 @@ HPPFILES = \
|
||||
Numerical/RootFinder.hpp \
|
||||
Numerical/Solver.hpp \
|
||||
Physics/CorrelatorFitter.hpp \
|
||||
Physics/DataFilter.hpp \
|
||||
Physics/EffectiveMass.hpp \
|
||||
Statistics/Dataset.hpp \
|
||||
Statistics/FitInterface.hpp \
|
||||
|
@ -32,46 +32,91 @@ DWT::DWT(const DWTFilter &filter)
|
||||
{}
|
||||
|
||||
// convolution primitive ///////////////////////////////////////////////////////
|
||||
void DWT::filterConvolution(DVec &out, const DVec &data,
|
||||
const std::vector<double> &filter, const Index offset)
|
||||
template <typename MatType>
|
||||
void filterConvolution(MatType &out, const MatType &data,
|
||||
const std::vector<double> &filter, const Index offset)
|
||||
{
|
||||
Index n = data.size(), nf = n*filter.size();
|
||||
Index n = data.rows(), nf = n*filter.size();
|
||||
|
||||
out.resize(n);
|
||||
out.resizeLike(data);
|
||||
out.fill(0.);
|
||||
for (unsigned int i = 0; i < filter.size(); ++i)
|
||||
{
|
||||
FOR_VEC(out, j)
|
||||
FOR_MAT(out, j, k)
|
||||
{
|
||||
out(j) += filter[i]*data((j + i + nf - offset) % n);
|
||||
out(j, k) += filter[i]*data((j + i + nf - offset) % n, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void DWT::filterConvolution(DVec &out, const DVec &data,
|
||||
const std::vector<double> &filter, const Index offset)
|
||||
{
|
||||
::filterConvolution(out, data, filter, offset);
|
||||
}
|
||||
|
||||
void DWT::filterConvolution(DMat &out, const DMat &data,
|
||||
const std::vector<double> &filter, const Index offset)
|
||||
{
|
||||
::filterConvolution(out, data, filter, offset);
|
||||
}
|
||||
|
||||
// downsampling/upsampling primitives //////////////////////////////////////////
|
||||
template <typename MatType>
|
||||
void downsample(MatType &out, const MatType &in)
|
||||
{
|
||||
if (out.rows() < in.rows()/2)
|
||||
{
|
||||
LATAN_ERROR(Size, "output rows smaller than half the input vector rows");
|
||||
}
|
||||
if (out.cols() != in.cols())
|
||||
{
|
||||
LATAN_ERROR(Size, "output and input number of columns mismatch");
|
||||
}
|
||||
for (Index j = 0; j < in.cols(); j++)
|
||||
for (Index i = 0; i < in.rows(); i += 2)
|
||||
{
|
||||
out(i/2, j) = in(i, j);
|
||||
}
|
||||
}
|
||||
|
||||
void DWT::downsample(DVec &out, const DVec &in)
|
||||
{
|
||||
if (out.size() < in.size()/2)
|
||||
::downsample(out, in);
|
||||
}
|
||||
|
||||
void DWT::downsample(DMat &out, const DMat &in)
|
||||
{
|
||||
::downsample(out, in);
|
||||
}
|
||||
|
||||
template <typename MatType>
|
||||
void upsample(MatType &out, const MatType &in)
|
||||
{
|
||||
if (out.size() < 2*in.size())
|
||||
{
|
||||
LATAN_ERROR(Size, "output vector smaller than half the input vector size");
|
||||
LATAN_ERROR(Size, "output rows smaller than twice the input rows");
|
||||
}
|
||||
for (Index i = 0; i < in.size(); i += 2)
|
||||
if (out.cols() != in.cols())
|
||||
{
|
||||
out(i/2) = in(i);
|
||||
LATAN_ERROR(Size, "output and input number of columns mismatch");
|
||||
}
|
||||
out.block(0, 0, 2*in.size(), out.cols()).fill(0.);
|
||||
for (Index j = 0; j < in.cols(); j++)
|
||||
for (Index i = 0; i < in.size(); i ++)
|
||||
{
|
||||
out(2*i, j) = in(i, j);
|
||||
}
|
||||
}
|
||||
|
||||
void DWT::upsample(DVec &out, const DVec &in)
|
||||
{
|
||||
if (out.size() < 2*in.size())
|
||||
{
|
||||
LATAN_ERROR(Size, "output vector smaller than twice the input vector size");
|
||||
}
|
||||
out.segment(0, 2*in.size()).fill(0.);
|
||||
for (Index i = 0; i < in.size(); i ++)
|
||||
{
|
||||
out(2*i) = in(i);
|
||||
}
|
||||
::upsample(out, in);
|
||||
}
|
||||
|
||||
void DWT::upsample(DMat &out, const DMat &in)
|
||||
{
|
||||
::upsample(out, in);
|
||||
}
|
||||
|
||||
// DWT /////////////////////////////////////////////////////////////////////////
|
||||
@ -135,3 +180,26 @@ DVec DWT::backward(const std::vector<DWTLevel>& dwt) const
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// concatenate levels //////////////////////////////////////////////////////////
|
||||
DVec DWT::concat(const std::vector<DWTLevel> &dwt, const int maxLevel, const bool dropLow)
|
||||
{
|
||||
unsigned int level = ((maxLevel >= 0) ? (maxLevel + 1) : dwt.size());
|
||||
Index nlast = dwt[level - 1].first.size();
|
||||
Index n = 2*dwt.front().first.size() - ((dropLow) ? nlast : 0);
|
||||
Index pt = n, nl;
|
||||
DVec res(n);
|
||||
|
||||
for (unsigned int l = 0; l < level; ++l)
|
||||
{
|
||||
nl = dwt[l].second.size();
|
||||
pt -= nl;
|
||||
res.segment(pt, nl) = dwt[l].second;
|
||||
}
|
||||
if (!dropLow)
|
||||
{
|
||||
res.segment(0, nl) = dwt[level-1].first;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
@ -22,6 +22,7 @@
|
||||
|
||||
#include <LatAnalyze/Global.hpp>
|
||||
#include <LatAnalyze/Numerical/DWTFilters.hpp>
|
||||
#include <LatAnalyze/Core/Mat.hpp>
|
||||
|
||||
BEGIN_LATAN_NAMESPACE
|
||||
|
||||
@ -40,12 +41,18 @@ public:
|
||||
// convolution primitive
|
||||
static void filterConvolution(DVec &out, const DVec &data,
|
||||
const std::vector<double> &filter, const Index offset);
|
||||
static void filterConvolution(DMat &out, const DMat &data,
|
||||
const std::vector<double> &filter, const Index offset);
|
||||
// downsampling/upsampling primitives
|
||||
static void downsample(DVec &out, const DVec &in);
|
||||
static void downsample(DMat &out, const DMat &in);
|
||||
static void upsample(DVec &out, const DVec &in);
|
||||
static void upsample(DMat &out, const DMat &in);
|
||||
// DWT
|
||||
std::vector<DWTLevel> forward(const DVec &data, const unsigned int level) const;
|
||||
DVec backward(const std::vector<DWTLevel>& dwt) const;
|
||||
// concatenate levels
|
||||
static DVec concat(const std::vector<DWTLevel>& dwt, const int maxLevel = -1, const bool dropLow = false);
|
||||
private:
|
||||
DWTFilter filter_;
|
||||
};
|
||||
|
83
lib/Physics/DataFilter.cpp
Normal file
83
lib/Physics/DataFilter.cpp
Normal file
@ -0,0 +1,83 @@
|
||||
/*
|
||||
* DataFilter.cpp, part of LatAnalyze 3
|
||||
*
|
||||
* Copyright (C) 2013 - 2020 Antonin Portelli
|
||||
*
|
||||
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <LatAnalyze/Physics/DataFilter.hpp>
|
||||
#include <LatAnalyze/includes.hpp>
|
||||
#include <LatAnalyze/Numerical/DWT.hpp>
|
||||
|
||||
using namespace std;
|
||||
using namespace Latan;
|
||||
|
||||
/******************************************************************************
|
||||
* DataFilter implementation *
|
||||
******************************************************************************/
|
||||
// constructor ////////////////////////////////////////////////////////////////
|
||||
DataFilter::DataFilter(const vector<double> &filter, const bool downsample)
|
||||
: filter_(filter), downsample_(downsample)
|
||||
{}
|
||||
|
||||
// filtering //////////////////////////////////////////////////////////////////
|
||||
template <typename MatType>
|
||||
void filter(MatType &out, const MatType &in, const vector<double> &filter,
|
||||
const bool downsample, MatType &buf)
|
||||
{
|
||||
if (!downsample)
|
||||
{
|
||||
out.resizeLike(in);
|
||||
DWT::filterConvolution(out, in, filter, filter.size()/2);
|
||||
}
|
||||
else
|
||||
{
|
||||
out.resize(in.rows()/2, in.cols());
|
||||
buf.resizeLike(in);
|
||||
DWT::filterConvolution(buf, in, filter, filter.size()/2);
|
||||
DWT::downsample(out, buf);
|
||||
}
|
||||
}
|
||||
|
||||
void DataFilter::operator()(DVec &out, const DVec &in)
|
||||
{
|
||||
filter(out, in, filter_, downsample_, vBuf_);
|
||||
}
|
||||
|
||||
void DataFilter::operator()(DMat &out, const DMat &in)
|
||||
{
|
||||
filter(out, in, filter_, downsample_, mBuf_);
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* LaplaceDataFilter implementation *
|
||||
******************************************************************************/
|
||||
// constructor ////////////////////////////////////////////////////////////////
|
||||
LaplaceDataFilter::LaplaceDataFilter(const bool downsample)
|
||||
: DataFilter({1., -2. , 1.}, downsample)
|
||||
{}
|
||||
|
||||
// filtering //////////////////////////////////////////////////////////////////
|
||||
void LaplaceDataFilter::operator()(DVec &out, const DVec &in, const double lambda)
|
||||
{
|
||||
filter_[1] = -2. - lambda;
|
||||
DataFilter::operator()(out, in);
|
||||
}
|
||||
|
||||
void LaplaceDataFilter::operator()(DMat &out, const DMat &in, const double lambda)
|
||||
{
|
||||
filter_[1] = -2. - lambda;
|
||||
DataFilter::operator()(out, in);
|
||||
}
|
139
lib/Physics/DataFilter.hpp
Normal file
139
lib/Physics/DataFilter.hpp
Normal file
@ -0,0 +1,139 @@
|
||||
/*
|
||||
* DataFilter.hpp, part of LatAnalyze 3
|
||||
*
|
||||
* Copyright (C) 2013 - 2020 Antonin Portelli
|
||||
*
|
||||
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef Latan_DataFilter_hpp_
|
||||
#define Latan_DataFilter_hpp_
|
||||
|
||||
#include <LatAnalyze/Global.hpp>
|
||||
#include <LatAnalyze/Core/Math.hpp>
|
||||
#include <LatAnalyze/Statistics/StatArray.hpp>
|
||||
#include <LatAnalyze/Statistics/MatSample.hpp>
|
||||
#include <LatAnalyze/Numerical/Minimizer.hpp>
|
||||
|
||||
BEGIN_LATAN_NAMESPACE
|
||||
|
||||
/******************************************************************************
|
||||
* Generic convolution filter class *
|
||||
******************************************************************************/
|
||||
class DataFilter
|
||||
{
|
||||
public:
|
||||
// constructor
|
||||
DataFilter(const std::vector<double> &filter, const bool downsample = false);
|
||||
// filtering
|
||||
void operator()(DVec &out, const DVec &in);
|
||||
void operator()(DMat &out, const DMat &in);
|
||||
template <typename MatType, Index o>
|
||||
void operator()(StatArray<MatType, o> &out, const StatArray<MatType, o> &in);
|
||||
protected:
|
||||
std::vector<double> filter_;
|
||||
private:
|
||||
bool downsample_;
|
||||
DVec vBuf_;
|
||||
DMat mBuf_;
|
||||
};
|
||||
|
||||
/******************************************************************************
|
||||
* Laplacian filter class *
|
||||
******************************************************************************/
|
||||
class LaplaceDataFilter: public DataFilter
|
||||
{
|
||||
public:
|
||||
// constructor
|
||||
LaplaceDataFilter(const bool downsample = false);
|
||||
// filtering
|
||||
void operator()(DVec &out, const DVec &in, const double lambda = 0.);
|
||||
void operator()(DMat &out, const DMat &in, const double lambda = 0.);
|
||||
template <typename MatType, Index o>
|
||||
void operator()(StatArray<MatType, o> &out, const StatArray<MatType, o> &in,
|
||||
const double lambda = 0.);
|
||||
// correlation optimisation
|
||||
template <typename MatType, Index o>
|
||||
double optimiseCdr(const StatArray<MatType, o> &data, Minimizer &min,
|
||||
const unsigned int nPass = 3);
|
||||
};
|
||||
|
||||
/******************************************************************************
|
||||
* DataFilter class template implementation *
|
||||
******************************************************************************/
|
||||
// filtering //////////////////////////////////////////////////////////////////
|
||||
template <typename MatType, Index o>
|
||||
void DataFilter::operator()(StatArray<MatType, o> &out, const StatArray<MatType, o> &in)
|
||||
{
|
||||
FOR_STAT_ARRAY(in, s)
|
||||
{
|
||||
(*this)(out[s], in[s]);
|
||||
}
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* LaplaceDataFilter class template implementation *
|
||||
******************************************************************************/
|
||||
// filtering //////////////////////////////////////////////////////////////////
|
||||
template <typename MatType, Index o>
|
||||
void LaplaceDataFilter::operator()(StatArray<MatType, o> &out,
|
||||
const StatArray<MatType, o> &in, const double lambda)
|
||||
{
|
||||
FOR_STAT_ARRAY(in, s)
|
||||
{
|
||||
(*this)(out[s], in[s], lambda);
|
||||
}
|
||||
}
|
||||
|
||||
// correlation optimisation ///////////////////////////////////////////////////
|
||||
template <typename MatType, Index o>
|
||||
double LaplaceDataFilter::optimiseCdr(const StatArray<MatType, o> &data,
|
||||
Minimizer &min, const unsigned int nPass)
|
||||
{
|
||||
StatArray<MatType, o> fdata(data.size());
|
||||
DVec init(1);
|
||||
double reg, prec;
|
||||
DoubleFunction cdr([&data, &fdata, this](const double *x)
|
||||
{
|
||||
double res;
|
||||
(*this)(fdata, data, x[0]);
|
||||
res = Math::cdr(fdata.correlationMatrix());
|
||||
|
||||
return res;
|
||||
}, 1);
|
||||
|
||||
min.setLowLimit(0., -0.1);
|
||||
min.setHighLimit(0., 100000.);
|
||||
init(0) = 0.1;
|
||||
min.setInit(init);
|
||||
prec = 0.1;
|
||||
min.setPrecision(prec);
|
||||
reg = min(cdr)(0);
|
||||
for (unsigned int pass = 0; pass < nPass; pass++)
|
||||
{
|
||||
min.setLowLimit(0., (1.-10.*prec)*reg);
|
||||
min.setHighLimit(0., (1.+10.*prec)*reg);
|
||||
init(0) = reg;
|
||||
min.setInit(init);
|
||||
prec *= 0.1;
|
||||
min.setPrecision(prec);
|
||||
reg = min(cdr)(0);
|
||||
}
|
||||
|
||||
return reg;
|
||||
}
|
||||
|
||||
END_LATAN_NAMESPACE
|
||||
|
||||
#endif // Latan_DataFilter_hpp_
|
@ -103,10 +103,6 @@ public:
|
||||
const Index nCol);
|
||||
// resize all matrices
|
||||
void resizeMat(const Index nRow, const Index nCol);
|
||||
// covariance matrix
|
||||
Mat<T> covarianceMatrix(const MatSample<T> &sample) const;
|
||||
Mat<T> varianceMatrix(void) const;
|
||||
Mat<T> correlationMatrix(void) const;
|
||||
};
|
||||
|
||||
// non-member operators
|
||||
@ -383,79 +379,6 @@ void MatSample<T>::resizeMat(const Index nRow, const Index nCol)
|
||||
}
|
||||
}
|
||||
|
||||
// covariance matrix ///////////////////////////////////////////////////////////
|
||||
template <typename T>
|
||||
Mat<T> MatSample<T>::covarianceMatrix(const MatSample<T> &sample) const
|
||||
{
|
||||
if (((*this)[central].cols() != 1) or (sample[central].cols() != 1))
|
||||
{
|
||||
LATAN_ERROR(Size, "samples have more than one column");
|
||||
}
|
||||
|
||||
Index n1 = (*this)[central].rows(), n2 = sample[central].rows();
|
||||
Index nSample = this->size();
|
||||
Mat<T> tmp1(n1, nSample), tmp2(n2, nSample), res(n1, n2);
|
||||
Mat<T> s1(n1, 1), s2(n2, 1), one(nSample, 1);
|
||||
|
||||
one.fill(1.);
|
||||
s1.fill(0.);
|
||||
s2.fill(0.);
|
||||
for (unsigned int s = 0; s < nSample; ++s)
|
||||
{
|
||||
s1 += (*this)[s];
|
||||
tmp1.col(s) = (*this)[s];
|
||||
}
|
||||
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
|
||||
for (unsigned int s = 0; s < nSample; ++s)
|
||||
{
|
||||
s2 += sample[s];
|
||||
tmp2.col(s) = sample[s];
|
||||
}
|
||||
tmp2 -= s2*one.transpose()/static_cast<double>(nSample);
|
||||
res = tmp1*tmp2.transpose()/static_cast<double>(nSample - 1);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Mat<T> MatSample<T>::varianceMatrix(void) const
|
||||
{
|
||||
if ((*this)[central].cols() != 1)
|
||||
{
|
||||
LATAN_ERROR(Size, "samples have more than one column");
|
||||
}
|
||||
|
||||
Index n1 = (*this)[central].rows();
|
||||
Index nSample = this->size();
|
||||
Mat<T> tmp1(n1, nSample), res(n1, n1);
|
||||
Mat<T> s1(n1, 1), one(nSample, 1);
|
||||
|
||||
one.fill(1.);
|
||||
s1.fill(0.);
|
||||
for (unsigned int s = 0; s < nSample; ++s)
|
||||
{
|
||||
s1 += (*this)[s];
|
||||
tmp1.col(s) = (*this)[s];
|
||||
}
|
||||
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
|
||||
res = tmp1*tmp1.transpose()/static_cast<double>(nSample - 1);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Mat<T> MatSample<T>::correlationMatrix(void) const
|
||||
{
|
||||
Mat<T> res = varianceMatrix();
|
||||
Mat<T> invDiag(res.rows(), 1);
|
||||
|
||||
invDiag = res.diagonal();
|
||||
invDiag = invDiag.cwiseInverse().cwiseSqrt();
|
||||
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
END_LATAN_NAMESPACE
|
||||
|
||||
#endif // Latan_MatSample_hpp_
|
||||
|
@ -52,10 +52,13 @@ public:
|
||||
// statistics
|
||||
void bin(Index binSize);
|
||||
T sum(const Index pos = 0, const Index n = -1) const;
|
||||
T meanOld(const Index pos = 0, const Index n = -1) const;
|
||||
T mean(const Index pos = 0, const Index n = -1) const;
|
||||
T covariance(const StatArray<T, os> &array) const;
|
||||
T variance(void) const;
|
||||
T covarianceMatrix(const StatArray<T, os> &data) const;
|
||||
T varianceMatrix(void) const;
|
||||
T correlationMatrix(void) const;
|
||||
|
||||
// IO type
|
||||
virtual IoType getType(void) const;
|
||||
public:
|
||||
@ -192,6 +195,79 @@ T StatArray<T, os>::variance(void) const
|
||||
return covariance(*this);
|
||||
}
|
||||
|
||||
template <typename MatType, Index os>
|
||||
MatType StatArray<MatType, os>::covarianceMatrix(
|
||||
const StatArray<MatType, os> &data) const
|
||||
{
|
||||
if (((*this)[central].cols() != 1) or (data[central].cols() != 1))
|
||||
{
|
||||
LATAN_ERROR(Size, "samples have more than one column");
|
||||
}
|
||||
|
||||
Index n1 = (*this)[central].rows(), n2 = data[central].rows();
|
||||
Index nSample = this->size();
|
||||
MatType tmp1(n1, nSample), tmp2(n2, nSample), res(n1, n2);
|
||||
MatType s1(n1, 1), s2(n2, 1), one(nSample, 1);
|
||||
|
||||
one.fill(1.);
|
||||
s1.fill(0.);
|
||||
s2.fill(0.);
|
||||
for (unsigned int s = 0; s < nSample; ++s)
|
||||
{
|
||||
s1 += (*this)[s];
|
||||
tmp1.col(s) = (*this)[s];
|
||||
}
|
||||
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
|
||||
for (unsigned int s = 0; s < nSample; ++s)
|
||||
{
|
||||
s2 += data[s];
|
||||
tmp2.col(s) = data[s];
|
||||
}
|
||||
tmp2 -= s2*one.transpose()/static_cast<double>(nSample);
|
||||
res = tmp1*tmp2.transpose()/static_cast<double>(nSample - 1);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename MatType, Index os>
|
||||
MatType StatArray<MatType, os>::varianceMatrix(void) const
|
||||
{
|
||||
if ((*this)[0].cols() != 1)
|
||||
{
|
||||
LATAN_ERROR(Size, "samples have more than one column");
|
||||
}
|
||||
|
||||
Index n1 = (*this)[0].rows();
|
||||
Index nSample = this->size();
|
||||
MatType tmp1(n1, nSample), res(n1, n1);
|
||||
MatType s1(n1, 1), one(nSample, 1);
|
||||
|
||||
one.fill(1.);
|
||||
s1.fill(0.);
|
||||
for (unsigned int s = 0; s < nSample; ++s)
|
||||
{
|
||||
s1 += (*this)[s];
|
||||
tmp1.col(s) = (*this)[s];
|
||||
}
|
||||
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
|
||||
res = tmp1*tmp1.transpose()/static_cast<double>(nSample - 1);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename MatType, Index os>
|
||||
MatType StatArray<MatType, os>::correlationMatrix(void) const
|
||||
{
|
||||
MatType res = varianceMatrix();
|
||||
MatType invDiag(res.rows(), 1);
|
||||
|
||||
invDiag = res.diagonal();
|
||||
invDiag = invDiag.cwiseInverse().cwiseSqrt();
|
||||
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// reduction operations ////////////////////////////////////////////////////////
|
||||
namespace StatOp
|
||||
{
|
||||
|
@ -343,7 +343,7 @@ SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
|
||||
result.nPar_ = sampleResult.getNPar();
|
||||
result.nDof_ = sampleResult.nDof_;
|
||||
result.parName_ = sampleResult.parName_;
|
||||
result.corrRangeDb_ = Math::svdDynamicRangeDb(getFitCorrMat());
|
||||
result.corrRangeDb_ = Math::cdr(getFitCorrMat());
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -358,7 +358,7 @@ FitResult XYStatData::fit(vector<Minimizer *> &minimizer, const DVec &init,
|
||||
result = (*m)(chi2);
|
||||
totalInit = result;
|
||||
}
|
||||
result.corrRangeDb_ = Math::svdDynamicRangeDb(getFitCorrMat());
|
||||
result.corrRangeDb_ = Math::cdr(getFitCorrMat());
|
||||
result.chi2_ = chi2(result);
|
||||
result.nPar_ = nPar;
|
||||
result.nDof_ = layout.totalYSize - nPar;
|
||||
|
@ -24,7 +24,7 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
// parse arguments /////////////////////////////////////////////////////////
|
||||
OptParser opt;
|
||||
bool parsed, doLaplace, doPlot, doHeatmap, doCorr, fold, doScan;
|
||||
bool parsed, doLaplace, doPlot, doHeatmap, doCorr, fold, doScan, noGuess;
|
||||
string corrFileName, model, outFileName, outFmt, savePlot;
|
||||
Index ti, tf, shift, nPar, thinning;
|
||||
double svdTol;
|
||||
@ -59,6 +59,8 @@ int main(int argc, char *argv[])
|
||||
"show the fit plot");
|
||||
opt.addOption("h", "heatmap" , OptParser::OptType::trigger, true,
|
||||
"show the fit correlation heatmap");
|
||||
opt.addOption("", "no-guess" , OptParser::OptType::trigger, true,
|
||||
"do not try to guess fit parameters");
|
||||
opt.addOption("", "save-plot", OptParser::OptType::value, true,
|
||||
"saves the source and .pdf", "");
|
||||
opt.addOption("", "scan", OptParser::OptType::trigger, true,
|
||||
@ -87,6 +89,7 @@ int main(int argc, char *argv[])
|
||||
fold = opt.gotOption("fold");
|
||||
doPlot = opt.gotOption("p");
|
||||
doHeatmap = opt.gotOption("h");
|
||||
noGuess = opt.gotOption("no-guess");
|
||||
savePlot = opt.optionValue("save-plot");
|
||||
doScan = opt.gotOption("scan");
|
||||
switch (opt.optionValue<unsigned int>("v"))
|
||||
@ -167,13 +170,14 @@ int main(int argc, char *argv[])
|
||||
fitter.setThinning(thinning);
|
||||
|
||||
// set initial values ******************************************************
|
||||
if (modelPar.type != CorrelatorType::undefined)
|
||||
if ((modelPar.type != CorrelatorType::undefined) and !noGuess)
|
||||
{
|
||||
init = CorrelatorModels::parameterGuess(corr, modelPar);
|
||||
}
|
||||
else
|
||||
{
|
||||
init.fill(0.1);
|
||||
init.fill(1.);
|
||||
init(0) = 0.2;
|
||||
}
|
||||
|
||||
// set limits for minimisers ***********************************************
|
||||
|
@ -17,6 +17,7 @@
|
||||
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <LatAnalyze/Core/Math.hpp>
|
||||
#include <LatAnalyze/Core/OptParser.hpp>
|
||||
#include <LatAnalyze/Core/Plot.hpp>
|
||||
#include <LatAnalyze/Io/Io.hpp>
|
||||
@ -53,7 +54,13 @@ int main(int argc, char *argv[])
|
||||
cerr << "usage: " << argv[0];
|
||||
cerr << " <options> <input file>" << endl;
|
||||
cerr << endl << "Possible options:" << endl << opt << endl;
|
||||
|
||||
cerr << "Available DWT filters:" << endl;
|
||||
for (auto &fv: DWTFilters::fromName)
|
||||
{
|
||||
cerr << fv.first << " ";
|
||||
}
|
||||
cerr << endl << endl;
|
||||
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
inFilename = opt.getArgs()[0];
|
||||
@ -68,22 +75,45 @@ int main(int argc, char *argv[])
|
||||
DMatSample in = Io::load<DMatSample>(inFilename), res;
|
||||
Index nSample = in.size(), n = in[central].rows();
|
||||
vector<DMatSample> out(ss ? 1 : level, DMatSample(nSample)),
|
||||
outh(ss ? 0 : level, DMatSample(nSample));
|
||||
outh(ss ? 0 : level, DMatSample(nSample)),
|
||||
concath(ss ? 0 : level, DMatSample(nSample));
|
||||
DMatSample concat(nSample, n, 1);
|
||||
DWT dwt(*DWTFilters::fromName.at(filterName));
|
||||
vector<DWT::DWTLevel> dataDWT(level);
|
||||
|
||||
FOR_STAT_ARRAY(in, s)
|
||||
{
|
||||
in[s].conservativeResize(n, 1);
|
||||
}
|
||||
if (!ss)
|
||||
{
|
||||
DMatSample buf(nSample);
|
||||
|
||||
cout << "-- compute discrete wavelet transform" << endl;
|
||||
cout << "filter '" << filterName << "' / " << level << " level(s)" << endl;
|
||||
FOR_STAT_ARRAY(in, s)
|
||||
{
|
||||
dataDWT = dwt.forward(in[s].col(0), level);
|
||||
dataDWT = dwt.forward(in[s], level);
|
||||
for (unsigned int l = 0; l < level; ++l)
|
||||
{
|
||||
out[l][s] = dataDWT[l].first;
|
||||
outh[l][s] = dataDWT[l].second;
|
||||
out[l][s] = dataDWT[l].first;
|
||||
outh[l][s] = dataDWT[l].second;
|
||||
concath[l][s] = DWT::concat(dataDWT, l, true);
|
||||
}
|
||||
concat[s] = DWT::concat(dataDWT);
|
||||
}
|
||||
cout << "Data CDR " << Math::cdr(in.correlationMatrix()) << " dB" << endl;
|
||||
cout << "DWT CDR " << Math::cdr(concat.correlationMatrix()) << " dB" << endl;
|
||||
for (unsigned int l = 0; l < level; ++l)
|
||||
{
|
||||
cout << "DWT level " << l << " CDR: L= ";
|
||||
cout << Math::cdr(out[l].correlationMatrix()) << " dB / H= ";
|
||||
cout << Math::cdr(outh[l].correlationMatrix()) << " dB" << endl;
|
||||
}
|
||||
for (unsigned int l = 0; l < level; ++l)
|
||||
{
|
||||
cout << "DWT detail level " << l << " CDR: ";
|
||||
cout << Math::cdr(concath[l].correlationMatrix()) << " dB" << endl;
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -102,7 +132,7 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
FOR_STAT_ARRAY(in, s)
|
||||
{
|
||||
dataDWT.back().first = in[s].col(0);
|
||||
dataDWT.back().first = in[s];
|
||||
out[0][s] = dwt.backward(dataDWT);
|
||||
}
|
||||
}
|
||||
@ -115,7 +145,9 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
Io::save<DMatSample>(out[l], outFilename + "/L" + strFrom(l) + ".h5");
|
||||
Io::save<DMatSample>(outh[l], outFilename + "/H" + strFrom(l) + ".h5");
|
||||
Io::save<DMatSample>(concath[l], outFilename + "/concatH" + strFrom(l) + ".h5");
|
||||
}
|
||||
Io::save<DMatSample>(concat, outFilename + "/concat.h5");
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -68,7 +68,7 @@ int main(int argc, char *argv[])
|
||||
var = sample.varianceMatrix();
|
||||
corr = sample.correlationMatrix();
|
||||
|
||||
cout << "dynamic range " << Math::svdDynamicRangeDb(corr) << " dB" << endl;
|
||||
cout << "dynamic range " << Math::cdr(corr) << " dB" << endl;
|
||||
p << PlotCorrMatrix(corr);
|
||||
p.display();
|
||||
if (!outVarName.empty())
|
||||
|
Reference in New Issue
Block a user