mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2025-06-21 08:32:01 +01:00
Compare commits
13 Commits
andrew-pr
...
4823426d55
Author | SHA1 | Date | |
---|---|---|---|
4823426d55 | |||
a620ff7b1c | |||
00cf854408 | |||
b938a855e3 | |||
83e09b82fc | |||
fde57d79f3 | |||
145155f733 | |||
6739019c83 | |||
13fddf4947 | |||
1604b4712f | |||
c73b609ac5 | |||
05138baa08 | |||
a0bdbfd9dd |
2
.github/workflows/build-macos.yml
vendored
2
.github/workflows/build-macos.yml
vendored
@ -1,6 +1,6 @@
|
|||||||
name: Build macOS
|
name: Build macOS
|
||||||
|
|
||||||
on: [push]
|
on: [push, workflow_dispatch]
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
build:
|
build:
|
||||||
|
5
.gitignore
vendored
5
.gitignore
vendored
@ -25,9 +25,10 @@ lib/*Lexer.cpp
|
|||||||
lib/*Parser.cpp
|
lib/*Parser.cpp
|
||||||
lib/*Parser.hpp
|
lib/*Parser.hpp
|
||||||
|
|
||||||
# Eigen headers
|
# Eigen headers and archives
|
||||||
lib/Eigen/*
|
lib/Eigen
|
||||||
lib/eigen_files.mk
|
lib/eigen_files.mk
|
||||||
|
eigen-*.tar.bz2
|
||||||
|
|
||||||
# CI builds
|
# CI builds
|
||||||
ci-scripts/local/*
|
ci-scripts/local/*
|
||||||
|
@ -2,5 +2,5 @@
|
|||||||
|
|
||||||
rm -rf .buildutils
|
rm -rf .buildutils
|
||||||
mkdir -p .buildutils/m4
|
mkdir -p .buildutils/m4
|
||||||
./update_eigen.sh eigen-3.3.8.tar.bz2
|
./update_eigen.sh eigen-3.4.0.tar.bz2
|
||||||
autoreconf -fvi
|
autoreconf -fvi
|
||||||
|
24
build.sh
24
build.sh
@ -1,24 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
set -e
|
|
||||||
|
|
||||||
PREFIX=`cat Makefile | grep '^prefix =' | awk '{print $3}'`
|
|
||||||
case $1 in
|
|
||||||
'')
|
|
||||||
echo '-- building...'
|
|
||||||
make -j8
|
|
||||||
echo '-- installing...'
|
|
||||||
make uninstall 1>/dev/null
|
|
||||||
make install 1>/dev/null;;
|
|
||||||
# if [[ `basename \`pwd\`` == "lib" ]]
|
|
||||||
# then
|
|
||||||
# echo '-- creating debug symbols...'
|
|
||||||
# dsymutil .libs/libLatAnalyze.0.dylib -o ${PREFIX}/lib/libLatAnalyze.0.dylib.dSYM
|
|
||||||
# fi;;
|
|
||||||
'clean')
|
|
||||||
echo '-- cleaning...'
|
|
||||||
make -j8 clean;;
|
|
||||||
*)
|
|
||||||
echo 'error: unknown action' 1>&2
|
|
||||||
exit 1;;
|
|
||||||
esac
|
|
Binary file not shown.
@ -7,7 +7,7 @@
|
|||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace Latan;
|
using namespace Latan;
|
||||||
|
|
||||||
constexpr Index size = 8;
|
constexpr Index n = 8;
|
||||||
constexpr Index nDraw = 20000;
|
constexpr Index nDraw = 20000;
|
||||||
constexpr Index nSample = 2000;
|
constexpr Index nSample = 2000;
|
||||||
const string stateFileName = "exRand.seed";
|
const string stateFileName = "exRand.seed";
|
||||||
@ -40,14 +40,14 @@ int main(void)
|
|||||||
p << PlotFunction(compile("return exp(-x_0^2/2)/sqrt(2*pi);", 1), -5., 5.);
|
p << PlotFunction(compile("return exp(-x_0^2/2)/sqrt(2*pi);", 1), -5., 5.);
|
||||||
p.display();
|
p.display();
|
||||||
|
|
||||||
DMat var(size, size);
|
DMat var(n, n);
|
||||||
DVec mean(size);
|
DVec mean(n);
|
||||||
DMatSample sample(nSample, size, 1);
|
DMatSample sample(nSample, n, 1);
|
||||||
|
|
||||||
cout << "-- generating " << nSample << " Gaussian random vectors..." << endl;
|
cout << "-- generating " << nSample << " Gaussian random vectors..." << endl;
|
||||||
var = DMat::Random(size, size);
|
var = DMat::Random(n, n);
|
||||||
var *= var.adjoint();
|
var *= var.adjoint();
|
||||||
mean = DVec::Random(size);
|
mean = DVec::Random(n);
|
||||||
RandomNormal mgauss(mean, var, rd());
|
RandomNormal mgauss(mean, var, rd());
|
||||||
sample[central] = mgauss();
|
sample[central] = mgauss();
|
||||||
FOR_STAT_ARRAY(sample, s)
|
FOR_STAT_ARRAY(sample, s)
|
||||||
|
@ -18,6 +18,7 @@
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
#include <LatAnalyze/Core/Math.hpp>
|
#include <LatAnalyze/Core/Math.hpp>
|
||||||
|
#include <LatAnalyze/Numerical/GslFFT.hpp>
|
||||||
#include <LatAnalyze/includes.hpp>
|
#include <LatAnalyze/includes.hpp>
|
||||||
#include <gsl/gsl_cdf.h>
|
#include <gsl/gsl_cdf.h>
|
||||||
|
|
||||||
@ -48,16 +49,42 @@ DMat MATH_NAMESPACE::corrToVar(const DMat &corr, const DVec &varDiag)
|
|||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
double MATH_NAMESPACE::svdDynamicRange(const DMat &mat)
|
double MATH_NAMESPACE::conditionNumber(const DMat &mat)
|
||||||
{
|
{
|
||||||
DVec s = mat.singularValues();
|
DVec s = mat.singularValues();
|
||||||
|
|
||||||
return s.maxCoeff()/s.minCoeff();
|
return s.maxCoeff()/s.minCoeff();
|
||||||
}
|
}
|
||||||
|
|
||||||
double MATH_NAMESPACE::svdDynamicRangeDb(const DMat &mat)
|
double MATH_NAMESPACE::cdr(const DMat &mat)
|
||||||
{
|
{
|
||||||
return 10.*log10(svdDynamicRange(mat));
|
return 10.*log10(conditionNumber(mat));
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename FFT>
|
||||||
|
double nsdr(const DMat &m)
|
||||||
|
{
|
||||||
|
Index n = m.rows();
|
||||||
|
FFT fft(n);
|
||||||
|
CMat buf(n, 1);
|
||||||
|
|
||||||
|
FOR_VEC(buf, i)
|
||||||
|
{
|
||||||
|
buf(i) = 0.;
|
||||||
|
for (Index j = 0; j < n; ++j)
|
||||||
|
{
|
||||||
|
buf(i) += m(j, (i+j) % n);
|
||||||
|
}
|
||||||
|
buf(i) /= n;
|
||||||
|
}
|
||||||
|
fft(buf, FFT::Forward);
|
||||||
|
|
||||||
|
return 10.*log10(buf.real().maxCoeff()/buf.real().minCoeff());
|
||||||
|
}
|
||||||
|
|
||||||
|
double MATH_NAMESPACE::nsdr(const DMat &mat)
|
||||||
|
{
|
||||||
|
return ::nsdr<GslFFT>(mat);
|
||||||
}
|
}
|
||||||
|
|
||||||
/******************************************************************************
|
/******************************************************************************
|
||||||
|
@ -73,8 +73,9 @@ namespace MATH_NAMESPACE
|
|||||||
DMat corrToVar(const DMat &corr, const DVec &varDiag);
|
DMat corrToVar(const DMat &corr, const DVec &varDiag);
|
||||||
|
|
||||||
// matrix SVD dynamic range
|
// matrix SVD dynamic range
|
||||||
double svdDynamicRange(const DMat &mat);
|
double conditionNumber(const DMat &mat);
|
||||||
double svdDynamicRangeDb(const DMat &mat);
|
double cdr(const DMat &mat);
|
||||||
|
double nsdr(const DMat &mat);
|
||||||
|
|
||||||
// Constants
|
// Constants
|
||||||
constexpr double pi = 3.1415926535897932384626433832795028841970;
|
constexpr double pi = 3.1415926535897932384626433832795028841970;
|
||||||
|
@ -515,14 +515,16 @@ void Dash::operator()(PlotOptions &option) const
|
|||||||
}
|
}
|
||||||
|
|
||||||
// LogScale constructor ////////////////////////////////////////////////////////
|
// LogScale constructor ////////////////////////////////////////////////////////
|
||||||
LogScale::LogScale(const Axis axis)
|
LogScale::LogScale(const Axis axis, const double basis)
|
||||||
: axis_(axis)
|
: axis_(axis)
|
||||||
|
, basis_(basis)
|
||||||
{}
|
{}
|
||||||
|
|
||||||
// Logscale modifier ///////////////////////////////////////////////////////////
|
// Logscale modifier ///////////////////////////////////////////////////////////
|
||||||
void LogScale::operator()(PlotOptions &option) const
|
void LogScale::operator()(PlotOptions &option) const
|
||||||
{
|
{
|
||||||
option.scaleMode[static_cast<int>(axis_)] |= Plot::Scale::log;
|
option.scaleMode[static_cast<int>(axis_)] |= Plot::Scale::log;
|
||||||
|
option.logScaleBasis[static_cast<int>(axis_)] = basis_;
|
||||||
}
|
}
|
||||||
|
|
||||||
// PlotRange constructors //////////////////////////////////////////////////////
|
// PlotRange constructors //////////////////////////////////////////////////////
|
||||||
@ -915,11 +917,11 @@ ostream & Latan::operator<<(ostream &out, const Plot &plot)
|
|||||||
out << "unset log" << endl;
|
out << "unset log" << endl;
|
||||||
if (plot.options_.scaleMode[x] & Plot::Scale::log)
|
if (plot.options_.scaleMode[x] & Plot::Scale::log)
|
||||||
{
|
{
|
||||||
out << "set log x" << endl;
|
out << "set log x " << plot.options_.logScaleBasis[x] << endl;;
|
||||||
}
|
}
|
||||||
if (plot.options_.scaleMode[y] & Plot::Scale::log)
|
if (plot.options_.scaleMode[y] & Plot::Scale::log)
|
||||||
{
|
{
|
||||||
out << "set log y" << endl;
|
out << "set log y " << plot.options_.logScaleBasis[y] << endl;
|
||||||
}
|
}
|
||||||
if (!plot.options_.label[x].empty())
|
if (!plot.options_.label[x].empty())
|
||||||
{
|
{
|
||||||
|
@ -227,6 +227,7 @@ struct PlotOptions
|
|||||||
std::string caption;
|
std::string caption;
|
||||||
std::string title;
|
std::string title;
|
||||||
unsigned int scaleMode[2];
|
unsigned int scaleMode[2];
|
||||||
|
double logScaleBasis[2];
|
||||||
Range scale[2];
|
Range scale[2];
|
||||||
std::string label[2];
|
std::string label[2];
|
||||||
std::string lineColor;
|
std::string lineColor;
|
||||||
@ -314,13 +315,14 @@ class LogScale: public PlotModifier
|
|||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
// constructor
|
// constructor
|
||||||
explicit LogScale(const Axis axis);
|
explicit LogScale(const Axis axis, const double basis = 10);
|
||||||
// destructor
|
// destructor
|
||||||
virtual ~LogScale(void) = default;
|
virtual ~LogScale(void) = default;
|
||||||
// modifier
|
// modifier
|
||||||
virtual void operator()(PlotOptions &option) const;
|
virtual void operator()(PlotOptions &option) const;
|
||||||
private:
|
private:
|
||||||
const Axis axis_;
|
const Axis axis_;
|
||||||
|
const double basis_;
|
||||||
};
|
};
|
||||||
|
|
||||||
class PlotRange: public PlotModifier
|
class PlotRange: public PlotModifier
|
||||||
|
@ -108,23 +108,6 @@ inline std::string strFrom(const T x)
|
|||||||
}
|
}
|
||||||
|
|
||||||
// specialization for vectors
|
// specialization for vectors
|
||||||
template<>
|
|
||||||
inline std::vector<Index> strTo<std::vector<Index>>(const std::string &str)
|
|
||||||
{
|
|
||||||
std::vector<Index> res;
|
|
||||||
std::vector<double> vbuf;
|
|
||||||
double buf;
|
|
||||||
std::istringstream stream(str);
|
|
||||||
|
|
||||||
while (!stream.eof())
|
|
||||||
{
|
|
||||||
stream >> buf;
|
|
||||||
res.push_back(buf);
|
|
||||||
}
|
|
||||||
|
|
||||||
return res;
|
|
||||||
}
|
|
||||||
|
|
||||||
template<>
|
template<>
|
||||||
inline DVec strTo<DVec>(const std::string &str)
|
inline DVec strTo<DVec>(const std::string &str)
|
||||||
{
|
{
|
||||||
|
@ -58,6 +58,7 @@ libLatAnalyze_la_SOURCES = \
|
|||||||
Numerical/RootFinder.cpp \
|
Numerical/RootFinder.cpp \
|
||||||
Numerical/Solver.cpp \
|
Numerical/Solver.cpp \
|
||||||
Physics/CorrelatorFitter.cpp \
|
Physics/CorrelatorFitter.cpp \
|
||||||
|
Physics/DataFilter.cpp \
|
||||||
Physics/EffectiveMass.cpp \
|
Physics/EffectiveMass.cpp \
|
||||||
Statistics/FitInterface.cpp \
|
Statistics/FitInterface.cpp \
|
||||||
Statistics/Histogram.cpp \
|
Statistics/Histogram.cpp \
|
||||||
@ -106,6 +107,7 @@ HPPFILES = \
|
|||||||
Numerical/RootFinder.hpp \
|
Numerical/RootFinder.hpp \
|
||||||
Numerical/Solver.hpp \
|
Numerical/Solver.hpp \
|
||||||
Physics/CorrelatorFitter.hpp \
|
Physics/CorrelatorFitter.hpp \
|
||||||
|
Physics/DataFilter.hpp \
|
||||||
Physics/EffectiveMass.hpp \
|
Physics/EffectiveMass.hpp \
|
||||||
Statistics/Dataset.hpp \
|
Statistics/Dataset.hpp \
|
||||||
Statistics/FitInterface.hpp \
|
Statistics/FitInterface.hpp \
|
||||||
|
@ -32,46 +32,91 @@ DWT::DWT(const DWTFilter &filter)
|
|||||||
{}
|
{}
|
||||||
|
|
||||||
// convolution primitive ///////////////////////////////////////////////////////
|
// convolution primitive ///////////////////////////////////////////////////////
|
||||||
void DWT::filterConvolution(DVec &out, const DVec &data,
|
template <typename MatType>
|
||||||
const std::vector<double> &filter, const Index offset)
|
void filterConvolution(MatType &out, const MatType &data,
|
||||||
|
const std::vector<double> &filter, const Index offset)
|
||||||
{
|
{
|
||||||
Index n = data.size(), nf = n*filter.size();
|
Index n = data.rows(), nf = n*filter.size();
|
||||||
|
|
||||||
out.resize(n);
|
out.resizeLike(data);
|
||||||
out.fill(0.);
|
out.fill(0.);
|
||||||
for (unsigned int i = 0; i < filter.size(); ++i)
|
for (unsigned int i = 0; i < filter.size(); ++i)
|
||||||
{
|
{
|
||||||
FOR_VEC(out, j)
|
FOR_MAT(out, j, k)
|
||||||
{
|
{
|
||||||
out(j) += filter[i]*data((j + i + nf - offset) % n);
|
out(j, k) += filter[i]*data((j + i + nf - offset) % n, k);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void DWT::filterConvolution(DVec &out, const DVec &data,
|
||||||
|
const std::vector<double> &filter, const Index offset)
|
||||||
|
{
|
||||||
|
::filterConvolution(out, data, filter, offset);
|
||||||
|
}
|
||||||
|
|
||||||
|
void DWT::filterConvolution(DMat &out, const DMat &data,
|
||||||
|
const std::vector<double> &filter, const Index offset)
|
||||||
|
{
|
||||||
|
::filterConvolution(out, data, filter, offset);
|
||||||
|
}
|
||||||
|
|
||||||
// downsampling/upsampling primitives //////////////////////////////////////////
|
// downsampling/upsampling primitives //////////////////////////////////////////
|
||||||
|
template <typename MatType>
|
||||||
|
void downsample(MatType &out, const MatType &in)
|
||||||
|
{
|
||||||
|
if (out.rows() < in.rows()/2)
|
||||||
|
{
|
||||||
|
LATAN_ERROR(Size, "output rows smaller than half the input vector rows");
|
||||||
|
}
|
||||||
|
if (out.cols() != in.cols())
|
||||||
|
{
|
||||||
|
LATAN_ERROR(Size, "output and input number of columns mismatch");
|
||||||
|
}
|
||||||
|
for (Index j = 0; j < in.cols(); j++)
|
||||||
|
for (Index i = 0; i < in.rows(); i += 2)
|
||||||
|
{
|
||||||
|
out(i/2, j) = in(i, j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void DWT::downsample(DVec &out, const DVec &in)
|
void DWT::downsample(DVec &out, const DVec &in)
|
||||||
{
|
{
|
||||||
if (out.size() < in.size()/2)
|
::downsample(out, in);
|
||||||
|
}
|
||||||
|
|
||||||
|
void DWT::downsample(DMat &out, const DMat &in)
|
||||||
|
{
|
||||||
|
::downsample(out, in);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatType>
|
||||||
|
void upsample(MatType &out, const MatType &in)
|
||||||
|
{
|
||||||
|
if (out.size() < 2*in.size())
|
||||||
{
|
{
|
||||||
LATAN_ERROR(Size, "output vector smaller than half the input vector size");
|
LATAN_ERROR(Size, "output rows smaller than twice the input rows");
|
||||||
}
|
}
|
||||||
for (Index i = 0; i < in.size(); i += 2)
|
if (out.cols() != in.cols())
|
||||||
{
|
{
|
||||||
out(i/2) = in(i);
|
LATAN_ERROR(Size, "output and input number of columns mismatch");
|
||||||
|
}
|
||||||
|
out.block(0, 0, 2*in.size(), out.cols()).fill(0.);
|
||||||
|
for (Index j = 0; j < in.cols(); j++)
|
||||||
|
for (Index i = 0; i < in.size(); i ++)
|
||||||
|
{
|
||||||
|
out(2*i, j) = in(i, j);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void DWT::upsample(DVec &out, const DVec &in)
|
void DWT::upsample(DVec &out, const DVec &in)
|
||||||
{
|
{
|
||||||
if (out.size() < 2*in.size())
|
::upsample(out, in);
|
||||||
{
|
}
|
||||||
LATAN_ERROR(Size, "output vector smaller than twice the input vector size");
|
|
||||||
}
|
void DWT::upsample(DMat &out, const DMat &in)
|
||||||
out.segment(0, 2*in.size()).fill(0.);
|
{
|
||||||
for (Index i = 0; i < in.size(); i ++)
|
::upsample(out, in);
|
||||||
{
|
|
||||||
out(2*i) = in(i);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// DWT /////////////////////////////////////////////////////////////////////////
|
// DWT /////////////////////////////////////////////////////////////////////////
|
||||||
@ -135,3 +180,26 @@ DVec DWT::backward(const std::vector<DWTLevel>& dwt) const
|
|||||||
|
|
||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// concatenate levels //////////////////////////////////////////////////////////
|
||||||
|
DVec DWT::concat(const std::vector<DWTLevel> &dwt, const int maxLevel, const bool dropLow)
|
||||||
|
{
|
||||||
|
unsigned int level = ((maxLevel >= 0) ? (maxLevel + 1) : dwt.size());
|
||||||
|
Index nlast = dwt[level - 1].first.size();
|
||||||
|
Index n = 2*dwt.front().first.size() - ((dropLow) ? nlast : 0);
|
||||||
|
Index pt = n, nl;
|
||||||
|
DVec res(n);
|
||||||
|
|
||||||
|
for (unsigned int l = 0; l < level; ++l)
|
||||||
|
{
|
||||||
|
nl = dwt[l].second.size();
|
||||||
|
pt -= nl;
|
||||||
|
res.segment(pt, nl) = dwt[l].second;
|
||||||
|
}
|
||||||
|
if (!dropLow)
|
||||||
|
{
|
||||||
|
res.segment(0, nl) = dwt[level-1].first;
|
||||||
|
}
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
@ -22,6 +22,7 @@
|
|||||||
|
|
||||||
#include <LatAnalyze/Global.hpp>
|
#include <LatAnalyze/Global.hpp>
|
||||||
#include <LatAnalyze/Numerical/DWTFilters.hpp>
|
#include <LatAnalyze/Numerical/DWTFilters.hpp>
|
||||||
|
#include <LatAnalyze/Core/Mat.hpp>
|
||||||
|
|
||||||
BEGIN_LATAN_NAMESPACE
|
BEGIN_LATAN_NAMESPACE
|
||||||
|
|
||||||
@ -40,12 +41,18 @@ public:
|
|||||||
// convolution primitive
|
// convolution primitive
|
||||||
static void filterConvolution(DVec &out, const DVec &data,
|
static void filterConvolution(DVec &out, const DVec &data,
|
||||||
const std::vector<double> &filter, const Index offset);
|
const std::vector<double> &filter, const Index offset);
|
||||||
|
static void filterConvolution(DMat &out, const DMat &data,
|
||||||
|
const std::vector<double> &filter, const Index offset);
|
||||||
// downsampling/upsampling primitives
|
// downsampling/upsampling primitives
|
||||||
static void downsample(DVec &out, const DVec &in);
|
static void downsample(DVec &out, const DVec &in);
|
||||||
|
static void downsample(DMat &out, const DMat &in);
|
||||||
static void upsample(DVec &out, const DVec &in);
|
static void upsample(DVec &out, const DVec &in);
|
||||||
|
static void upsample(DMat &out, const DMat &in);
|
||||||
// DWT
|
// DWT
|
||||||
std::vector<DWTLevel> forward(const DVec &data, const unsigned int level) const;
|
std::vector<DWTLevel> forward(const DVec &data, const unsigned int level) const;
|
||||||
DVec backward(const std::vector<DWTLevel>& dwt) const;
|
DVec backward(const std::vector<DWTLevel>& dwt) const;
|
||||||
|
// concatenate levels
|
||||||
|
static DVec concat(const std::vector<DWTLevel>& dwt, const int maxLevel = -1, const bool dropLow = false);
|
||||||
private:
|
private:
|
||||||
DWTFilter filter_;
|
DWTFilter filter_;
|
||||||
};
|
};
|
||||||
|
@ -253,39 +253,16 @@ DMatSample CorrelatorUtils::shift(const DMatSample &c, const Index ts)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
DMatSample CorrelatorUtils::fold(const DMatSample &c, const CorrelatorModels::ModelPar &par)
|
DMatSample CorrelatorUtils::fold(const DMatSample &c)
|
||||||
{
|
{
|
||||||
const Index nt = c[central].rows();
|
const Index nt = c[central].rows();
|
||||||
DMatSample buf = c;
|
DMatSample buf = c;
|
||||||
int sign;
|
|
||||||
bool fold = false;
|
|
||||||
|
|
||||||
switch (par.type)
|
FOR_STAT_ARRAY(buf, s)
|
||||||
{
|
{
|
||||||
case CorrelatorType::cosh:
|
for (Index t = 0; t < nt; ++t)
|
||||||
case CorrelatorType::cst:
|
|
||||||
sign = 1;
|
|
||||||
fold = true;
|
|
||||||
break;
|
|
||||||
case CorrelatorType::sinh:
|
|
||||||
sign = -1;
|
|
||||||
fold = true;
|
|
||||||
break;
|
|
||||||
case CorrelatorType::linear:
|
|
||||||
cout << "Linear model is asymmetric: will not fold." << endl;
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (fold)
|
|
||||||
{
|
|
||||||
FOR_STAT_ARRAY(buf, s)
|
|
||||||
{
|
{
|
||||||
for (Index t = 0; t < nt; ++t)
|
buf[s](t) = 0.5*(c[s](t) + c[s]((nt - t) % nt));
|
||||||
{
|
|
||||||
buf[s](t) = 0.5*(c[s](t) + sign*c[s]((nt - t) % nt));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -56,7 +56,7 @@ namespace CorrelatorModels
|
|||||||
namespace CorrelatorUtils
|
namespace CorrelatorUtils
|
||||||
{
|
{
|
||||||
DMatSample shift(const DMatSample &c, const Index ts);
|
DMatSample shift(const DMatSample &c, const Index ts);
|
||||||
DMatSample fold(const DMatSample &c, const CorrelatorModels::ModelPar &par);
|
DMatSample fold(const DMatSample &c);
|
||||||
DMatSample fourierTransform(const DMatSample &c, FFT &fft,
|
DMatSample fourierTransform(const DMatSample &c, FFT &fft,
|
||||||
const unsigned int dir = FFT::Forward);
|
const unsigned int dir = FFT::Forward);
|
||||||
};
|
};
|
||||||
|
83
lib/Physics/DataFilter.cpp
Normal file
83
lib/Physics/DataFilter.cpp
Normal file
@ -0,0 +1,83 @@
|
|||||||
|
/*
|
||||||
|
* DataFilter.cpp, part of LatAnalyze 3
|
||||||
|
*
|
||||||
|
* Copyright (C) 2013 - 2020 Antonin Portelli
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <LatAnalyze/Physics/DataFilter.hpp>
|
||||||
|
#include <LatAnalyze/includes.hpp>
|
||||||
|
#include <LatAnalyze/Numerical/DWT.hpp>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
using namespace Latan;
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* DataFilter implementation *
|
||||||
|
******************************************************************************/
|
||||||
|
// constructor ////////////////////////////////////////////////////////////////
|
||||||
|
DataFilter::DataFilter(const vector<double> &filter, const bool downsample)
|
||||||
|
: filter_(filter), downsample_(downsample)
|
||||||
|
{}
|
||||||
|
|
||||||
|
// filtering //////////////////////////////////////////////////////////////////
|
||||||
|
template <typename MatType>
|
||||||
|
void filter(MatType &out, const MatType &in, const vector<double> &filter,
|
||||||
|
const bool downsample, MatType &buf)
|
||||||
|
{
|
||||||
|
if (!downsample)
|
||||||
|
{
|
||||||
|
out.resizeLike(in);
|
||||||
|
DWT::filterConvolution(out, in, filter, filter.size()/2);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
out.resize(in.rows()/2, in.cols());
|
||||||
|
buf.resizeLike(in);
|
||||||
|
DWT::filterConvolution(buf, in, filter, filter.size()/2);
|
||||||
|
DWT::downsample(out, buf);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void DataFilter::operator()(DVec &out, const DVec &in)
|
||||||
|
{
|
||||||
|
filter(out, in, filter_, downsample_, vBuf_);
|
||||||
|
}
|
||||||
|
|
||||||
|
void DataFilter::operator()(DMat &out, const DMat &in)
|
||||||
|
{
|
||||||
|
filter(out, in, filter_, downsample_, mBuf_);
|
||||||
|
}
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* LaplaceDataFilter implementation *
|
||||||
|
******************************************************************************/
|
||||||
|
// constructor ////////////////////////////////////////////////////////////////
|
||||||
|
LaplaceDataFilter::LaplaceDataFilter(const bool downsample)
|
||||||
|
: DataFilter({1., -2. , 1.}, downsample)
|
||||||
|
{}
|
||||||
|
|
||||||
|
// filtering //////////////////////////////////////////////////////////////////
|
||||||
|
void LaplaceDataFilter::operator()(DVec &out, const DVec &in, const double lambda)
|
||||||
|
{
|
||||||
|
filter_[1] = -2. - lambda;
|
||||||
|
DataFilter::operator()(out, in);
|
||||||
|
}
|
||||||
|
|
||||||
|
void LaplaceDataFilter::operator()(DMat &out, const DMat &in, const double lambda)
|
||||||
|
{
|
||||||
|
filter_[1] = -2. - lambda;
|
||||||
|
DataFilter::operator()(out, in);
|
||||||
|
}
|
139
lib/Physics/DataFilter.hpp
Normal file
139
lib/Physics/DataFilter.hpp
Normal file
@ -0,0 +1,139 @@
|
|||||||
|
/*
|
||||||
|
* DataFilter.hpp, part of LatAnalyze 3
|
||||||
|
*
|
||||||
|
* Copyright (C) 2013 - 2020 Antonin Portelli
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef Latan_DataFilter_hpp_
|
||||||
|
#define Latan_DataFilter_hpp_
|
||||||
|
|
||||||
|
#include <LatAnalyze/Global.hpp>
|
||||||
|
#include <LatAnalyze/Core/Math.hpp>
|
||||||
|
#include <LatAnalyze/Statistics/StatArray.hpp>
|
||||||
|
#include <LatAnalyze/Statistics/MatSample.hpp>
|
||||||
|
#include <LatAnalyze/Numerical/Minimizer.hpp>
|
||||||
|
|
||||||
|
BEGIN_LATAN_NAMESPACE
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* Generic convolution filter class *
|
||||||
|
******************************************************************************/
|
||||||
|
class DataFilter
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
// constructor
|
||||||
|
DataFilter(const std::vector<double> &filter, const bool downsample = false);
|
||||||
|
// filtering
|
||||||
|
void operator()(DVec &out, const DVec &in);
|
||||||
|
void operator()(DMat &out, const DMat &in);
|
||||||
|
template <typename MatType, Index o>
|
||||||
|
void operator()(StatArray<MatType, o> &out, const StatArray<MatType, o> &in);
|
||||||
|
protected:
|
||||||
|
std::vector<double> filter_;
|
||||||
|
private:
|
||||||
|
bool downsample_;
|
||||||
|
DVec vBuf_;
|
||||||
|
DMat mBuf_;
|
||||||
|
};
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* Laplacian filter class *
|
||||||
|
******************************************************************************/
|
||||||
|
class LaplaceDataFilter: public DataFilter
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
// constructor
|
||||||
|
LaplaceDataFilter(const bool downsample = false);
|
||||||
|
// filtering
|
||||||
|
void operator()(DVec &out, const DVec &in, const double lambda = 0.);
|
||||||
|
void operator()(DMat &out, const DMat &in, const double lambda = 0.);
|
||||||
|
template <typename MatType, Index o>
|
||||||
|
void operator()(StatArray<MatType, o> &out, const StatArray<MatType, o> &in,
|
||||||
|
const double lambda = 0.);
|
||||||
|
// correlation optimisation
|
||||||
|
template <typename MatType, Index o>
|
||||||
|
double optimiseCdr(const StatArray<MatType, o> &data, Minimizer &min,
|
||||||
|
const unsigned int nPass = 3);
|
||||||
|
};
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* DataFilter class template implementation *
|
||||||
|
******************************************************************************/
|
||||||
|
// filtering //////////////////////////////////////////////////////////////////
|
||||||
|
template <typename MatType, Index o>
|
||||||
|
void DataFilter::operator()(StatArray<MatType, o> &out, const StatArray<MatType, o> &in)
|
||||||
|
{
|
||||||
|
FOR_STAT_ARRAY(in, s)
|
||||||
|
{
|
||||||
|
(*this)(out[s], in[s]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/******************************************************************************
|
||||||
|
* LaplaceDataFilter class template implementation *
|
||||||
|
******************************************************************************/
|
||||||
|
// filtering //////////////////////////////////////////////////////////////////
|
||||||
|
template <typename MatType, Index o>
|
||||||
|
void LaplaceDataFilter::operator()(StatArray<MatType, o> &out,
|
||||||
|
const StatArray<MatType, o> &in, const double lambda)
|
||||||
|
{
|
||||||
|
FOR_STAT_ARRAY(in, s)
|
||||||
|
{
|
||||||
|
(*this)(out[s], in[s], lambda);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// correlation optimisation ///////////////////////////////////////////////////
|
||||||
|
template <typename MatType, Index o>
|
||||||
|
double LaplaceDataFilter::optimiseCdr(const StatArray<MatType, o> &data,
|
||||||
|
Minimizer &min, const unsigned int nPass)
|
||||||
|
{
|
||||||
|
StatArray<MatType, o> fdata(data.size());
|
||||||
|
DVec init(1);
|
||||||
|
double reg, prec;
|
||||||
|
DoubleFunction cdr([&data, &fdata, this](const double *x)
|
||||||
|
{
|
||||||
|
double res;
|
||||||
|
(*this)(fdata, data, x[0]);
|
||||||
|
res = Math::cdr(fdata.correlationMatrix());
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}, 1);
|
||||||
|
|
||||||
|
min.setLowLimit(0., -0.1);
|
||||||
|
min.setHighLimit(0., 100000.);
|
||||||
|
init(0) = 0.1;
|
||||||
|
min.setInit(init);
|
||||||
|
prec = 0.1;
|
||||||
|
min.setPrecision(prec);
|
||||||
|
reg = min(cdr)(0);
|
||||||
|
for (unsigned int pass = 0; pass < nPass; pass++)
|
||||||
|
{
|
||||||
|
min.setLowLimit(0., (1.-10.*prec)*reg);
|
||||||
|
min.setHighLimit(0., (1.+10.*prec)*reg);
|
||||||
|
init(0) = reg;
|
||||||
|
min.setInit(init);
|
||||||
|
prec *= 0.1;
|
||||||
|
min.setPrecision(prec);
|
||||||
|
reg = min(cdr)(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
return reg;
|
||||||
|
}
|
||||||
|
|
||||||
|
END_LATAN_NAMESPACE
|
||||||
|
|
||||||
|
#endif // Latan_DataFilter_hpp_
|
@ -146,16 +146,6 @@ double Histogram::getX(const Index i) const
|
|||||||
return x_(i);
|
return x_(i);
|
||||||
}
|
}
|
||||||
|
|
||||||
double Histogram::getXMin(void) const
|
|
||||||
{
|
|
||||||
return xMin_;
|
|
||||||
}
|
|
||||||
|
|
||||||
double Histogram::getXMax(void) const
|
|
||||||
{
|
|
||||||
return xMax_;
|
|
||||||
}
|
|
||||||
|
|
||||||
double Histogram::operator[](const Index i) const
|
double Histogram::operator[](const Index i) const
|
||||||
{
|
{
|
||||||
return bin_(i)*(isNormalized() ? norm_ : 1.);
|
return bin_(i)*(isNormalized() ? norm_ : 1.);
|
||||||
|
@ -52,8 +52,6 @@ public:
|
|||||||
const StatArray<double> & getData(void) const;
|
const StatArray<double> & getData(void) const;
|
||||||
const StatArray<double> & getWeight(void) const;
|
const StatArray<double> & getWeight(void) const;
|
||||||
double getX(const Index i) const;
|
double getX(const Index i) const;
|
||||||
double getXMin(void) const;
|
|
||||||
double getXMax(void) const;
|
|
||||||
double operator[](const Index i) const;
|
double operator[](const Index i) const;
|
||||||
double operator()(const double x) const;
|
double operator()(const double x) const;
|
||||||
// percentiles & confidence interval
|
// percentiles & confidence interval
|
||||||
|
@ -103,10 +103,6 @@ public:
|
|||||||
const Index nCol);
|
const Index nCol);
|
||||||
// resize all matrices
|
// resize all matrices
|
||||||
void resizeMat(const Index nRow, const Index nCol);
|
void resizeMat(const Index nRow, const Index nCol);
|
||||||
// covariance matrix
|
|
||||||
Mat<T> covarianceMatrix(const MatSample<T> &sample) const;
|
|
||||||
Mat<T> varianceMatrix(void) const;
|
|
||||||
Mat<T> correlationMatrix(void) const;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
// non-member operators
|
// non-member operators
|
||||||
@ -383,79 +379,6 @@ void MatSample<T>::resizeMat(const Index nRow, const Index nCol)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// covariance matrix ///////////////////////////////////////////////////////////
|
|
||||||
template <typename T>
|
|
||||||
Mat<T> MatSample<T>::covarianceMatrix(const MatSample<T> &sample) const
|
|
||||||
{
|
|
||||||
if (((*this)[central].cols() != 1) or (sample[central].cols() != 1))
|
|
||||||
{
|
|
||||||
LATAN_ERROR(Size, "samples have more than one column");
|
|
||||||
}
|
|
||||||
|
|
||||||
Index n1 = (*this)[central].rows(), n2 = sample[central].rows();
|
|
||||||
Index nSample = this->size();
|
|
||||||
Mat<T> tmp1(n1, nSample), tmp2(n2, nSample), res(n1, n2);
|
|
||||||
Mat<T> s1(n1, 1), s2(n2, 1), one(nSample, 1);
|
|
||||||
|
|
||||||
one.fill(1.);
|
|
||||||
s1.fill(0.);
|
|
||||||
s2.fill(0.);
|
|
||||||
for (unsigned int s = 0; s < nSample; ++s)
|
|
||||||
{
|
|
||||||
s1 += (*this)[s];
|
|
||||||
tmp1.col(s) = (*this)[s];
|
|
||||||
}
|
|
||||||
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
|
|
||||||
for (unsigned int s = 0; s < nSample; ++s)
|
|
||||||
{
|
|
||||||
s2 += sample[s];
|
|
||||||
tmp2.col(s) = sample[s];
|
|
||||||
}
|
|
||||||
tmp2 -= s2*one.transpose()/static_cast<double>(nSample);
|
|
||||||
res = tmp1*tmp2.transpose()/static_cast<double>(nSample - 1);
|
|
||||||
|
|
||||||
return res;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
Mat<T> MatSample<T>::varianceMatrix(void) const
|
|
||||||
{
|
|
||||||
if ((*this)[central].cols() != 1)
|
|
||||||
{
|
|
||||||
LATAN_ERROR(Size, "samples have more than one column");
|
|
||||||
}
|
|
||||||
|
|
||||||
Index n1 = (*this)[central].rows();
|
|
||||||
Index nSample = this->size();
|
|
||||||
Mat<T> tmp1(n1, nSample), res(n1, n1);
|
|
||||||
Mat<T> s1(n1, 1), one(nSample, 1);
|
|
||||||
|
|
||||||
one.fill(1.);
|
|
||||||
s1.fill(0.);
|
|
||||||
for (unsigned int s = 0; s < nSample; ++s)
|
|
||||||
{
|
|
||||||
s1 += (*this)[s];
|
|
||||||
tmp1.col(s) = (*this)[s];
|
|
||||||
}
|
|
||||||
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
|
|
||||||
res = tmp1*tmp1.transpose()/static_cast<double>(nSample - 1);
|
|
||||||
|
|
||||||
return res;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
Mat<T> MatSample<T>::correlationMatrix(void) const
|
|
||||||
{
|
|
||||||
Mat<T> res = varianceMatrix();
|
|
||||||
Mat<T> invDiag(res.rows(), 1);
|
|
||||||
|
|
||||||
invDiag = res.diagonal();
|
|
||||||
invDiag = invDiag.cwiseInverse().cwiseSqrt();
|
|
||||||
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
|
|
||||||
|
|
||||||
return res;
|
|
||||||
}
|
|
||||||
|
|
||||||
END_LATAN_NAMESPACE
|
END_LATAN_NAMESPACE
|
||||||
|
|
||||||
#endif // Latan_MatSample_hpp_
|
#endif // Latan_MatSample_hpp_
|
||||||
|
@ -52,10 +52,13 @@ public:
|
|||||||
// statistics
|
// statistics
|
||||||
void bin(Index binSize);
|
void bin(Index binSize);
|
||||||
T sum(const Index pos = 0, const Index n = -1) const;
|
T sum(const Index pos = 0, const Index n = -1) const;
|
||||||
T meanOld(const Index pos = 0, const Index n = -1) const;
|
|
||||||
T mean(const Index pos = 0, const Index n = -1) const;
|
T mean(const Index pos = 0, const Index n = -1) const;
|
||||||
T covariance(const StatArray<T, os> &array) const;
|
T covariance(const StatArray<T, os> &array) const;
|
||||||
T variance(void) const;
|
T variance(void) const;
|
||||||
|
T covarianceMatrix(const StatArray<T, os> &data) const;
|
||||||
|
T varianceMatrix(void) const;
|
||||||
|
T correlationMatrix(void) const;
|
||||||
|
|
||||||
// IO type
|
// IO type
|
||||||
virtual IoType getType(void) const;
|
virtual IoType getType(void) const;
|
||||||
public:
|
public:
|
||||||
@ -192,6 +195,79 @@ T StatArray<T, os>::variance(void) const
|
|||||||
return covariance(*this);
|
return covariance(*this);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename MatType, Index os>
|
||||||
|
MatType StatArray<MatType, os>::covarianceMatrix(
|
||||||
|
const StatArray<MatType, os> &data) const
|
||||||
|
{
|
||||||
|
if (((*this)[central].cols() != 1) or (data[central].cols() != 1))
|
||||||
|
{
|
||||||
|
LATAN_ERROR(Size, "samples have more than one column");
|
||||||
|
}
|
||||||
|
|
||||||
|
Index n1 = (*this)[central].rows(), n2 = data[central].rows();
|
||||||
|
Index nSample = this->size();
|
||||||
|
MatType tmp1(n1, nSample), tmp2(n2, nSample), res(n1, n2);
|
||||||
|
MatType s1(n1, 1), s2(n2, 1), one(nSample, 1);
|
||||||
|
|
||||||
|
one.fill(1.);
|
||||||
|
s1.fill(0.);
|
||||||
|
s2.fill(0.);
|
||||||
|
for (unsigned int s = 0; s < nSample; ++s)
|
||||||
|
{
|
||||||
|
s1 += (*this)[s];
|
||||||
|
tmp1.col(s) = (*this)[s];
|
||||||
|
}
|
||||||
|
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
|
||||||
|
for (unsigned int s = 0; s < nSample; ++s)
|
||||||
|
{
|
||||||
|
s2 += data[s];
|
||||||
|
tmp2.col(s) = data[s];
|
||||||
|
}
|
||||||
|
tmp2 -= s2*one.transpose()/static_cast<double>(nSample);
|
||||||
|
res = tmp1*tmp2.transpose()/static_cast<double>(nSample - 1);
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatType, Index os>
|
||||||
|
MatType StatArray<MatType, os>::varianceMatrix(void) const
|
||||||
|
{
|
||||||
|
if ((*this)[0].cols() != 1)
|
||||||
|
{
|
||||||
|
LATAN_ERROR(Size, "samples have more than one column");
|
||||||
|
}
|
||||||
|
|
||||||
|
Index n1 = (*this)[0].rows();
|
||||||
|
Index nSample = this->size();
|
||||||
|
MatType tmp1(n1, nSample), res(n1, n1);
|
||||||
|
MatType s1(n1, 1), one(nSample, 1);
|
||||||
|
|
||||||
|
one.fill(1.);
|
||||||
|
s1.fill(0.);
|
||||||
|
for (unsigned int s = 0; s < nSample; ++s)
|
||||||
|
{
|
||||||
|
s1 += (*this)[s];
|
||||||
|
tmp1.col(s) = (*this)[s];
|
||||||
|
}
|
||||||
|
tmp1 -= s1*one.transpose()/static_cast<double>(nSample);
|
||||||
|
res = tmp1*tmp1.transpose()/static_cast<double>(nSample - 1);
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatType, Index os>
|
||||||
|
MatType StatArray<MatType, os>::correlationMatrix(void) const
|
||||||
|
{
|
||||||
|
MatType res = varianceMatrix();
|
||||||
|
MatType invDiag(res.rows(), 1);
|
||||||
|
|
||||||
|
invDiag = res.diagonal();
|
||||||
|
invDiag = invDiag.cwiseInverse().cwiseSqrt();
|
||||||
|
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
// reduction operations ////////////////////////////////////////////////////////
|
// reduction operations ////////////////////////////////////////////////////////
|
||||||
namespace StatOp
|
namespace StatOp
|
||||||
{
|
{
|
||||||
|
@ -300,67 +300,6 @@ const XYStatData & XYSampleData::getData(void)
|
|||||||
}
|
}
|
||||||
|
|
||||||
// fit /////////////////////////////////////////////////////////////////////////
|
// fit /////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
void XYSampleData::fitSample(std::vector<Minimizer *> &minimizer,
|
|
||||||
const std::vector<const DoubleModel *> &v,
|
|
||||||
SampleFitResult &result,
|
|
||||||
DVec &init,
|
|
||||||
Index s)
|
|
||||||
{
|
|
||||||
result.resize(nSample_);
|
|
||||||
result.chi2_.resize(nSample_);
|
|
||||||
result.model_.resize(v.size());
|
|
||||||
FitResult sampleResult;
|
|
||||||
setDataToSample(s);
|
|
||||||
if (s == central)
|
|
||||||
{
|
|
||||||
sampleResult = data_.fit(minimizer, init, v);
|
|
||||||
init = sampleResult.segment(0, init.size());
|
|
||||||
result.nPar_ = sampleResult.getNPar();
|
|
||||||
result.nDof_ = sampleResult.nDof_;
|
|
||||||
result.parName_ = sampleResult.parName_;
|
|
||||||
result.corrRangeDb_ = Math::svdDynamicRangeDb(getFitCorrMat());
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
sampleResult = data_.fit(*(minimizer.back()), init, v);
|
|
||||||
}
|
|
||||||
result[s] = sampleResult;
|
|
||||||
result.chi2_[s] = sampleResult.getChi2();
|
|
||||||
for (unsigned int j = 0; j < v.size(); ++j)
|
|
||||||
{
|
|
||||||
result.model_[j].resize(nSample_);
|
|
||||||
result.model_[j][s] = sampleResult.getModel(j);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
|
|
||||||
const DVec &init,
|
|
||||||
const std::vector<const DoubleModel *> &v,
|
|
||||||
Index s)
|
|
||||||
{
|
|
||||||
computeVarMat();
|
|
||||||
|
|
||||||
SampleFitResult result;
|
|
||||||
DVec initCopy = init;
|
|
||||||
|
|
||||||
fitSample(minimizer, v, result, initCopy, s);
|
|
||||||
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
SampleFitResult XYSampleData::fit(Minimizer &minimizer,
|
|
||||||
const DVec &init,
|
|
||||||
const std::vector<const DoubleModel *> &v,
|
|
||||||
Index s)
|
|
||||||
{
|
|
||||||
vector<Minimizer *> mv{&minimizer};
|
|
||||||
|
|
||||||
return fit(mv, init, v, s);
|
|
||||||
}
|
|
||||||
|
|
||||||
SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
|
SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
|
||||||
const DVec &init,
|
const DVec &init,
|
||||||
const std::vector<const DoubleModel *> &v)
|
const std::vector<const DoubleModel *> &v)
|
||||||
@ -368,14 +307,43 @@ SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
|
|||||||
computeVarMat();
|
computeVarMat();
|
||||||
|
|
||||||
SampleFitResult result;
|
SampleFitResult result;
|
||||||
|
FitResult sampleResult;
|
||||||
DVec initCopy = init;
|
DVec initCopy = init;
|
||||||
Minimizer::Verbosity verbCopy = minimizer.back()->getVerbosity();
|
Minimizer::Verbosity verbCopy = minimizer.back()->getVerbosity();
|
||||||
|
|
||||||
|
result.resize(nSample_);
|
||||||
|
result.chi2_.resize(nSample_);
|
||||||
|
result.model_.resize(v.size());
|
||||||
FOR_STAT_ARRAY(result, s)
|
FOR_STAT_ARRAY(result, s)
|
||||||
{
|
{
|
||||||
fitSample(minimizer, v, result, initCopy, s);
|
setDataToSample(s);
|
||||||
|
if (s == central)
|
||||||
|
{
|
||||||
|
sampleResult = data_.fit(minimizer, initCopy, v);
|
||||||
|
initCopy = sampleResult.segment(0, initCopy.size());
|
||||||
|
if (verbCopy != Minimizer::Verbosity::Debug)
|
||||||
|
{
|
||||||
|
minimizer.back()->setVerbosity(Minimizer::Verbosity::Silent);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
|
||||||
|
sampleResult = data_.fit(*(minimizer.back()), initCopy, v);
|
||||||
|
}
|
||||||
|
result[s] = sampleResult;
|
||||||
|
result.chi2_[s] = sampleResult.getChi2();
|
||||||
|
for (unsigned int j = 0; j < v.size(); ++j)
|
||||||
|
{
|
||||||
|
result.model_[j].resize(nSample_);
|
||||||
|
result.model_[j][s] = sampleResult.getModel(j);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
minimizer.back()->setVerbosity(verbCopy);
|
minimizer.back()->setVerbosity(verbCopy);
|
||||||
|
result.nPar_ = sampleResult.getNPar();
|
||||||
|
result.nDof_ = sampleResult.nDof_;
|
||||||
|
result.parName_ = sampleResult.parName_;
|
||||||
|
result.corrRangeDb_ = Math::cdr(getFitCorrMat());
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
@ -103,13 +103,6 @@ public:
|
|||||||
// get internal XYStatData
|
// get internal XYStatData
|
||||||
const XYStatData & getData(void);
|
const XYStatData & getData(void);
|
||||||
// fit
|
// fit
|
||||||
void fitSample(std::vector<Minimizer *> &minimizer,
|
|
||||||
const std::vector<const DoubleModel *> &v,
|
|
||||||
SampleFitResult &sampleResult, DVec &init, Index s);
|
|
||||||
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
|
|
||||||
const std::vector<const DoubleModel *> &v, Index s);
|
|
||||||
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
|
|
||||||
const std::vector<const DoubleModel *> &v, Index s);
|
|
||||||
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
|
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
|
||||||
const std::vector<const DoubleModel *> &v);
|
const std::vector<const DoubleModel *> &v);
|
||||||
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
|
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
|
||||||
|
@ -358,7 +358,7 @@ FitResult XYStatData::fit(vector<Minimizer *> &minimizer, const DVec &init,
|
|||||||
result = (*m)(chi2);
|
result = (*m)(chi2);
|
||||||
totalInit = result;
|
totalInit = result;
|
||||||
}
|
}
|
||||||
result.corrRangeDb_ = Math::svdDynamicRangeDb(getFitCorrMat());
|
result.corrRangeDb_ = Math::cdr(getFitCorrMat());
|
||||||
result.chi2_ = chi2(result);
|
result.chi2_ = chi2(result);
|
||||||
result.nPar_ = nPar;
|
result.nPar_ = nPar;
|
||||||
result.nDof_ = layout.totalYSize - nPar;
|
result.nDof_ = layout.totalYSize - nPar;
|
||||||
|
@ -24,7 +24,7 @@ int main(int argc, char *argv[])
|
|||||||
{
|
{
|
||||||
// parse arguments /////////////////////////////////////////////////////////
|
// parse arguments /////////////////////////////////////////////////////////
|
||||||
OptParser opt;
|
OptParser opt;
|
||||||
bool parsed, doLaplace, doPlot, doHeatmap, doCorr, fold, doScan;
|
bool parsed, doLaplace, doPlot, doHeatmap, doCorr, fold, doScan, noGuess;
|
||||||
string corrFileName, model, outFileName, outFmt, savePlot;
|
string corrFileName, model, outFileName, outFmt, savePlot;
|
||||||
Index ti, tf, shift, nPar, thinning;
|
Index ti, tf, shift, nPar, thinning;
|
||||||
double svdTol;
|
double svdTol;
|
||||||
@ -59,6 +59,8 @@ int main(int argc, char *argv[])
|
|||||||
"show the fit plot");
|
"show the fit plot");
|
||||||
opt.addOption("h", "heatmap" , OptParser::OptType::trigger, true,
|
opt.addOption("h", "heatmap" , OptParser::OptType::trigger, true,
|
||||||
"show the fit correlation heatmap");
|
"show the fit correlation heatmap");
|
||||||
|
opt.addOption("", "no-guess" , OptParser::OptType::trigger, true,
|
||||||
|
"do not try to guess fit parameters");
|
||||||
opt.addOption("", "save-plot", OptParser::OptType::value, true,
|
opt.addOption("", "save-plot", OptParser::OptType::value, true,
|
||||||
"saves the source and .pdf", "");
|
"saves the source and .pdf", "");
|
||||||
opt.addOption("", "scan", OptParser::OptType::trigger, true,
|
opt.addOption("", "scan", OptParser::OptType::trigger, true,
|
||||||
@ -87,6 +89,7 @@ int main(int argc, char *argv[])
|
|||||||
fold = opt.gotOption("fold");
|
fold = opt.gotOption("fold");
|
||||||
doPlot = opt.gotOption("p");
|
doPlot = opt.gotOption("p");
|
||||||
doHeatmap = opt.gotOption("h");
|
doHeatmap = opt.gotOption("h");
|
||||||
|
noGuess = opt.gotOption("no-guess");
|
||||||
savePlot = opt.optionValue("save-plot");
|
savePlot = opt.optionValue("save-plot");
|
||||||
doScan = opt.gotOption("scan");
|
doScan = opt.gotOption("scan");
|
||||||
switch (opt.optionValue<unsigned int>("v"))
|
switch (opt.optionValue<unsigned int>("v"))
|
||||||
@ -114,7 +117,6 @@ int main(int argc, char *argv[])
|
|||||||
nt = corr[central].rows();
|
nt = corr[central].rows();
|
||||||
corr = corr.block(0, 0, nt, 1);
|
corr = corr.block(0, 0, nt, 1);
|
||||||
corr = CorrelatorUtils::shift(corr, shift);
|
corr = CorrelatorUtils::shift(corr, shift);
|
||||||
|
|
||||||
if (doLaplace)
|
if (doLaplace)
|
||||||
{
|
{
|
||||||
vector<double> filter = {1., -2., 1.};
|
vector<double> filter = {1., -2., 1.};
|
||||||
@ -156,11 +158,6 @@ int main(int argc, char *argv[])
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (fold)
|
|
||||||
{
|
|
||||||
corr = CorrelatorUtils::fold(corr,modelPar);
|
|
||||||
}
|
|
||||||
|
|
||||||
// fit /////////////////////////////////////////////////////////////////////
|
// fit /////////////////////////////////////////////////////////////////////
|
||||||
DVec init(nPar);
|
DVec init(nPar);
|
||||||
NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
|
NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
|
||||||
@ -173,13 +170,14 @@ int main(int argc, char *argv[])
|
|||||||
fitter.setThinning(thinning);
|
fitter.setThinning(thinning);
|
||||||
|
|
||||||
// set initial values ******************************************************
|
// set initial values ******************************************************
|
||||||
if (modelPar.type != CorrelatorType::undefined)
|
if ((modelPar.type != CorrelatorType::undefined) and !noGuess)
|
||||||
{
|
{
|
||||||
init = CorrelatorModels::parameterGuess(corr, modelPar);
|
init = CorrelatorModels::parameterGuess(corr, modelPar);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
init.fill(0.1);
|
init.fill(1.);
|
||||||
|
init(0) = 0.2;
|
||||||
}
|
}
|
||||||
|
|
||||||
// set limits for minimisers ***********************************************
|
// set limits for minimisers ***********************************************
|
||||||
|
@ -17,6 +17,7 @@
|
|||||||
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
#include <LatAnalyze/Core/Math.hpp>
|
||||||
#include <LatAnalyze/Core/OptParser.hpp>
|
#include <LatAnalyze/Core/OptParser.hpp>
|
||||||
#include <LatAnalyze/Core/Plot.hpp>
|
#include <LatAnalyze/Core/Plot.hpp>
|
||||||
#include <LatAnalyze/Io/Io.hpp>
|
#include <LatAnalyze/Io/Io.hpp>
|
||||||
@ -53,6 +54,12 @@ int main(int argc, char *argv[])
|
|||||||
cerr << "usage: " << argv[0];
|
cerr << "usage: " << argv[0];
|
||||||
cerr << " <options> <input file>" << endl;
|
cerr << " <options> <input file>" << endl;
|
||||||
cerr << endl << "Possible options:" << endl << opt << endl;
|
cerr << endl << "Possible options:" << endl << opt << endl;
|
||||||
|
cerr << "Available DWT filters:" << endl;
|
||||||
|
for (auto &fv: DWTFilters::fromName)
|
||||||
|
{
|
||||||
|
cerr << fv.first << " ";
|
||||||
|
}
|
||||||
|
cerr << endl << endl;
|
||||||
|
|
||||||
return EXIT_FAILURE;
|
return EXIT_FAILURE;
|
||||||
}
|
}
|
||||||
@ -68,22 +75,45 @@ int main(int argc, char *argv[])
|
|||||||
DMatSample in = Io::load<DMatSample>(inFilename), res;
|
DMatSample in = Io::load<DMatSample>(inFilename), res;
|
||||||
Index nSample = in.size(), n = in[central].rows();
|
Index nSample = in.size(), n = in[central].rows();
|
||||||
vector<DMatSample> out(ss ? 1 : level, DMatSample(nSample)),
|
vector<DMatSample> out(ss ? 1 : level, DMatSample(nSample)),
|
||||||
outh(ss ? 0 : level, DMatSample(nSample));
|
outh(ss ? 0 : level, DMatSample(nSample)),
|
||||||
|
concath(ss ? 0 : level, DMatSample(nSample));
|
||||||
|
DMatSample concat(nSample, n, 1);
|
||||||
DWT dwt(*DWTFilters::fromName.at(filterName));
|
DWT dwt(*DWTFilters::fromName.at(filterName));
|
||||||
vector<DWT::DWTLevel> dataDWT(level);
|
vector<DWT::DWTLevel> dataDWT(level);
|
||||||
|
|
||||||
|
FOR_STAT_ARRAY(in, s)
|
||||||
|
{
|
||||||
|
in[s].conservativeResize(n, 1);
|
||||||
|
}
|
||||||
if (!ss)
|
if (!ss)
|
||||||
{
|
{
|
||||||
|
DMatSample buf(nSample);
|
||||||
|
|
||||||
cout << "-- compute discrete wavelet transform" << endl;
|
cout << "-- compute discrete wavelet transform" << endl;
|
||||||
cout << "filter '" << filterName << "' / " << level << " level(s)" << endl;
|
cout << "filter '" << filterName << "' / " << level << " level(s)" << endl;
|
||||||
FOR_STAT_ARRAY(in, s)
|
FOR_STAT_ARRAY(in, s)
|
||||||
{
|
{
|
||||||
dataDWT = dwt.forward(in[s].col(0), level);
|
dataDWT = dwt.forward(in[s], level);
|
||||||
for (unsigned int l = 0; l < level; ++l)
|
for (unsigned int l = 0; l < level; ++l)
|
||||||
{
|
{
|
||||||
out[l][s] = dataDWT[l].first;
|
out[l][s] = dataDWT[l].first;
|
||||||
outh[l][s] = dataDWT[l].second;
|
outh[l][s] = dataDWT[l].second;
|
||||||
|
concath[l][s] = DWT::concat(dataDWT, l, true);
|
||||||
}
|
}
|
||||||
|
concat[s] = DWT::concat(dataDWT);
|
||||||
|
}
|
||||||
|
cout << "Data CDR " << Math::cdr(in.correlationMatrix()) << " dB" << endl;
|
||||||
|
cout << "DWT CDR " << Math::cdr(concat.correlationMatrix()) << " dB" << endl;
|
||||||
|
for (unsigned int l = 0; l < level; ++l)
|
||||||
|
{
|
||||||
|
cout << "DWT level " << l << " CDR: L= ";
|
||||||
|
cout << Math::cdr(out[l].correlationMatrix()) << " dB / H= ";
|
||||||
|
cout << Math::cdr(outh[l].correlationMatrix()) << " dB" << endl;
|
||||||
|
}
|
||||||
|
for (unsigned int l = 0; l < level; ++l)
|
||||||
|
{
|
||||||
|
cout << "DWT detail level " << l << " CDR: ";
|
||||||
|
cout << Math::cdr(concath[l].correlationMatrix()) << " dB" << endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
@ -102,7 +132,7 @@ int main(int argc, char *argv[])
|
|||||||
}
|
}
|
||||||
FOR_STAT_ARRAY(in, s)
|
FOR_STAT_ARRAY(in, s)
|
||||||
{
|
{
|
||||||
dataDWT.back().first = in[s].col(0);
|
dataDWT.back().first = in[s];
|
||||||
out[0][s] = dwt.backward(dataDWT);
|
out[0][s] = dwt.backward(dataDWT);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -115,7 +145,9 @@ int main(int argc, char *argv[])
|
|||||||
{
|
{
|
||||||
Io::save<DMatSample>(out[l], outFilename + "/L" + strFrom(l) + ".h5");
|
Io::save<DMatSample>(out[l], outFilename + "/L" + strFrom(l) + ".h5");
|
||||||
Io::save<DMatSample>(outh[l], outFilename + "/H" + strFrom(l) + ".h5");
|
Io::save<DMatSample>(outh[l], outFilename + "/H" + strFrom(l) + ".h5");
|
||||||
|
Io::save<DMatSample>(concath[l], outFilename + "/concatH" + strFrom(l) + ".h5");
|
||||||
}
|
}
|
||||||
|
Io::save<DMatSample>(concat, outFilename + "/concat.h5");
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
|
@ -18,42 +18,30 @@
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
#include <LatAnalyze/Io/Io.hpp>
|
#include <LatAnalyze/Io/Io.hpp>
|
||||||
#include <LatAnalyze/Core/OptParser.hpp>
|
|
||||||
|
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace Latan;
|
using namespace Latan;
|
||||||
|
|
||||||
int main(int argc, char *argv[])
|
int main(int argc, char *argv[])
|
||||||
{
|
{
|
||||||
OptParser opt;
|
|
||||||
Index nSample;
|
Index nSample;
|
||||||
double val, err;
|
double val, err;
|
||||||
string outFileName;
|
string outFileName;
|
||||||
|
|
||||||
opt.addOption("r", "seed" , OptParser::OptType::value, true,
|
if (argc != 5)
|
||||||
"random generator seed (default: random)");
|
|
||||||
opt.addOption("", "help" , OptParser::OptType::trigger, true,
|
|
||||||
"show this help message and exit");
|
|
||||||
|
|
||||||
bool parsed = opt.parse(argc, argv);
|
|
||||||
if (!parsed or (opt.getArgs().size() != 4) or opt.gotOption("help"))
|
|
||||||
{
|
{
|
||||||
cerr << "usage: " << argv[0];
|
cerr << "usage: " << argv[0];
|
||||||
cerr << " <central value> <error> <nSample> <output file>" << endl;
|
cerr << " <central value> <error> <nSample> <output file>" << endl;
|
||||||
cerr << endl << "Possible options:" << endl << opt << endl;
|
|
||||||
|
|
||||||
return EXIT_FAILURE;
|
return EXIT_FAILURE;
|
||||||
}
|
}
|
||||||
|
|
||||||
val = strTo<double>(argv[1]);
|
val = strTo<double>(argv[1]);
|
||||||
err = strTo<double>(argv[2]);
|
err = strTo<double>(argv[2]);
|
||||||
nSample = strTo<Index>(argv[3]);
|
nSample = strTo<Index>(argv[3]);
|
||||||
outFileName = argv[4];
|
outFileName = argv[4];
|
||||||
|
|
||||||
random_device rd;
|
random_device rd;
|
||||||
SeedType seed = (opt.gotOption("r")) ? opt.optionValue<SeedType>("r") : rd();
|
mt19937 gen(rd());
|
||||||
mt19937 gen(seed);
|
|
||||||
normal_distribution<> dis(val, err);
|
normal_distribution<> dis(val, err);
|
||||||
DSample res(nSample);
|
DSample res(nSample);
|
||||||
|
|
||||||
|
@ -68,7 +68,7 @@ int main(int argc, char *argv[])
|
|||||||
var = sample.varianceMatrix();
|
var = sample.varianceMatrix();
|
||||||
corr = sample.correlationMatrix();
|
corr = sample.correlationMatrix();
|
||||||
|
|
||||||
cout << "dynamic range " << Math::svdDynamicRangeDb(corr) << " dB" << endl;
|
cout << "dynamic range " << Math::cdr(corr) << " dB" << endl;
|
||||||
p << PlotCorrMatrix(corr);
|
p << PlotCorrMatrix(corr);
|
||||||
p.display();
|
p.display();
|
||||||
if (!outVarName.empty())
|
if (!outVarName.empty())
|
||||||
|
@ -38,23 +38,9 @@ int main(int argc, char *argv[])
|
|||||||
{
|
{
|
||||||
DMatSample s = Io::load<DMatSample>(fileName);
|
DMatSample s = Io::load<DMatSample>(fileName);
|
||||||
string name = Io::getFirstName(fileName);
|
string name = Io::getFirstName(fileName);
|
||||||
Index nRows = s[central].rows();
|
|
||||||
Index nCols = s[central].cols();
|
|
||||||
cout << scientific;
|
cout << scientific;
|
||||||
cout << "central value +/- standard deviation\n" << endl;
|
cout << "central value:\n" << s[central] << endl;
|
||||||
cout << "Re:" << endl;
|
cout << "standard deviation:\n" << s.variance().cwiseSqrt() << endl;
|
||||||
for(Index i = 0; i < nRows; i++)
|
|
||||||
{
|
|
||||||
cout << s[central](i,0) << " +/- " << s.variance().cwiseSqrt()(i,0) << endl;
|
|
||||||
}
|
|
||||||
if(nCols == 2)
|
|
||||||
{
|
|
||||||
cout << "\nIm:" << endl;
|
|
||||||
for(Index i = 0; i < nRows; i++)
|
|
||||||
{
|
|
||||||
cout << s[central](i,1) << " +/- " << s.variance().cwiseSqrt()(i,1) << endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (!copy.empty())
|
if (!copy.empty())
|
||||||
{
|
{
|
||||||
Io::save(s, copy, File::Mode::write, name);
|
Io::save(s, copy, File::Mode::write, name);
|
||||||
@ -65,8 +51,8 @@ int main(int argc, char *argv[])
|
|||||||
DSample s = Io::load<DSample>(fileName);
|
DSample s = Io::load<DSample>(fileName);
|
||||||
string name = Io::getFirstName(fileName);
|
string name = Io::getFirstName(fileName);
|
||||||
cout << scientific;
|
cout << scientific;
|
||||||
cout << "central value +/- standard deviation\n" << endl;
|
cout << "central value:\n" << s[central] << endl;
|
||||||
cout << s[central] << " +/- " << sqrt(s.variance()) << endl;
|
cout << "standard deviation:\n" << sqrt(s.variance()) << endl;
|
||||||
if (!copy.empty())
|
if (!copy.empty())
|
||||||
{
|
{
|
||||||
Io::save(s, copy, File::Mode::write, name);
|
Io::save(s, copy, File::Mode::write, name);
|
||||||
|
Reference in New Issue
Block a user